Linear gyrokinetic calculations are applied to the reversed field pinch configuration to investigate the occurrence of ion temperature gradient instabilities. The analysis shows this type of instability to be only marginally responsible for particle and energy transport. The required gradients could be reached only in correspondence to the temperature slopes arising at the boundary of the helical structure in the quasisingle helicity states. The dependence of the instability threshold on the relevant macroscopic quantities is considered. A discussion on the main differences in the driving mechanisms existing between the reversed field pinch and the tokamak configuration is addressed.
Gyrokinetic simulations of ion temperature gradient modes in the reversed field pinch
Predebon I;
2010
Abstract
Linear gyrokinetic calculations are applied to the reversed field pinch configuration to investigate the occurrence of ion temperature gradient instabilities. The analysis shows this type of instability to be only marginally responsible for particle and energy transport. The required gradients could be reached only in correspondence to the temperature slopes arising at the boundary of the helical structure in the quasisingle helicity states. The dependence of the instability threshold on the relevant macroscopic quantities is considered. A discussion on the main differences in the driving mechanisms existing between the reversed field pinch and the tokamak configuration is addressed.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


