The circular dichroism (CD) of photoelectrons generated by near-infrared (NIR) laser pulses using multiphoton ionization of excited He+ ions in the 3p(m= +1) state is investigated. The ions were prepared by circularly polarized extreme ultraviolet (XUV) pulses. For circularly polarized NIR pulses co- and counter-rotating relative to the polarization of the XUV pulse, a complex variation of the CD is observed as a result of intensity- and polarization-dependent Freeman resonances, with and without additional dichroic AC-Stark shifts. The experimental results are compared with numerical solutions of the time-dependent Schrödinger equation to identify and interpret the pronounced variation of the experimentally observed CD.
Circular dichroism in multiphoton ionization of resonantly excited helium ions near channel closing
Di Fraia M.;Zangrando M.;
2024
Abstract
The circular dichroism (CD) of photoelectrons generated by near-infrared (NIR) laser pulses using multiphoton ionization of excited He+ ions in the 3p(m= +1) state is investigated. The ions were prepared by circularly polarized extreme ultraviolet (XUV) pulses. For circularly polarized NIR pulses co- and counter-rotating relative to the polarization of the XUV pulse, a complex variation of the CD is observed as a result of intensity- and polarization-dependent Freeman resonances, with and without additional dichroic AC-Stark shifts. The experimental results are compared with numerical solutions of the time-dependent Schrödinger equation to identify and interpret the pronounced variation of the experimentally observed CD.File | Dimensione | Formato | |
---|---|---|---|
ScRep_14_27232_2024.pdf
accesso aperto
Tipologia:
Versione Editoriale (PDF)
Licenza:
Creative commons
Dimensione
3.16 MB
Formato
Adobe PDF
|
3.16 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.