Quantum annealers are commercial devices that aim to solve very hard computational problems1, typically those involving spin glasses2,3. Just as in metallurgic annealing, in which a ferrous metal is slowly cooled4, quantum annealers seek good solutions by slowly removing the transverse magnetic field at the lowest possible temperature. Removing the field diminishes the quantum fluctuations but forces the system to traverse the critical point that separates the disordered phase (at large fields) from the spin-glass phase (at small fields). A full understanding of this phase transition is still missing. A debated, crucial question regards the closing of the energy gap separating the ground state from the first excited state. All hopes of achieving an exponential speed-up, compared to classical computers, rest on the assumption that the gap will close algebraically with the number of spins5–9. However, renormalization group calculations predict instead that there is an infinite-randomness fixed point10. Here we solve this debate through extreme-scale numerical simulations, finding that both parties have grasped parts of the truth. Although the closing of the gap at the critical point is indeed super-algebraic, it remains algebraic if one restricts the symmetry of possible excitations. As this symmetry restriction is experimentally achievable (at least nominally), there is still hope for the quantum annealing paradigm11–13.

The quantum transition of the two-dimensional Ising spin glass

Massimo Bernaschi;Isidoro Gonzalez-Adalid Pemartin;Giorgio Parisi
2024

Abstract

Quantum annealers are commercial devices that aim to solve very hard computational problems1, typically those involving spin glasses2,3. Just as in metallurgic annealing, in which a ferrous metal is slowly cooled4, quantum annealers seek good solutions by slowly removing the transverse magnetic field at the lowest possible temperature. Removing the field diminishes the quantum fluctuations but forces the system to traverse the critical point that separates the disordered phase (at large fields) from the spin-glass phase (at small fields). A full understanding of this phase transition is still missing. A debated, crucial question regards the closing of the energy gap separating the ground state from the first excited state. All hopes of achieving an exponential speed-up, compared to classical computers, rest on the assumption that the gap will close algebraically with the number of spins5–9. However, renormalization group calculations predict instead that there is an infinite-randomness fixed point10. Here we solve this debate through extreme-scale numerical simulations, finding that both parties have grasped parts of the truth. Although the closing of the gap at the critical point is indeed super-algebraic, it remains algebraic if one restricts the symmetry of possible excitations. As this symmetry restriction is experimentally achievable (at least nominally), there is still hope for the quantum annealing paradigm11–13.
2024
Istituto Applicazioni del Calcolo ''Mauro Picone''
Istituto di Nanotecnologia - NANOTEC - Sede Secondaria Roma
Quantum Spin Glasses
Spin Glasses
Disorder Systems
File in questo prodotto:
File Dimensione Formato  
s41586-024-07647-y.pdf

accesso aperto

Descrizione: Complete article
Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 4.38 MB
Formato Adobe PDF
4.38 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/532211
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 3
social impact