The synergy between experiment, theory, and simulations enables a microscopic analysis of spin-glass dynamics in a magnetic field in the vicinity of and below the spin-glass transition temperature T g. The spin-glass correlation length, ξ(t, t w; T), is analysed both in experiments and in simulations in terms of the waiting time t w after the spin glass has been cooled down to a stabilised measuring temperature T < T g and of the time t after the magnetic field is changed. This correlation length is extracted experimentally for a CuMn 6 at. % single crystal, as well as for simulations on the Janus II special-purpose supercomputer, the latter with time and length scales comparable to experiment. The non-linear magnetic susceptibility is reported from experiment and simulations, using ξ(t, t w; T) as the scaling variable. Previous experiments are reanalysed, and disagreements about the nature of the Zeeman energy are resolved. The growth of the spin-glass magnetisation in zero-field magnetisation experiments, M ZFC(t, t w; T), is measured from simulations, verifying the scaling relationships in the dynamical or non-equilibrium regime. Our preliminary search for the de Almeida-Thouless line in D = 3 is discussed.

Spin-glass dynamics in the presence of a magnetic field: Exploration of microscopic properties

Paga I.
;
Gonzalez-Adalid Pemartin I.;Vincenzo Marinari;Parisi G.;Federico Ricci-Tersenghi;
2021

Abstract

The synergy between experiment, theory, and simulations enables a microscopic analysis of spin-glass dynamics in a magnetic field in the vicinity of and below the spin-glass transition temperature T g. The spin-glass correlation length, ξ(t, t w; T), is analysed both in experiments and in simulations in terms of the waiting time t w after the spin glass has been cooled down to a stabilised measuring temperature T < T g and of the time t after the magnetic field is changed. This correlation length is extracted experimentally for a CuMn 6 at. % single crystal, as well as for simulations on the Janus II special-purpose supercomputer, the latter with time and length scales comparable to experiment. The non-linear magnetic susceptibility is reported from experiment and simulations, using ξ(t, t w; T) as the scaling variable. Previous experiments are reanalysed, and disagreements about the nature of the Zeeman energy are resolved. The growth of the spin-glass magnetisation in zero-field magnetisation experiments, M ZFC(t, t w; T), is measured from simulations, verifying the scaling relationships in the dynamical or non-equilibrium regime. Our preliminary search for the de Almeida-Thouless line in D = 3 is discussed.
2021
Istituto Applicazioni del Calcolo ''Mauro Picone''
Istituto di Nanotecnologia - NANOTEC - Sede Secondaria Roma
ergodicity breaking
memory effects
spin glasses
File in questo prodotto:
File Dimensione Formato  
Paga_2021_J._Stat._Mech._2021_033301.pdf

solo utenti autorizzati

Descrizione: Complete article
Tipologia: Versione Editoriale (PDF)
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 3.06 MB
Formato Adobe PDF
3.06 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/532224
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 15
  • ???jsp.display-item.citation.isi??? 12
social impact