Experiments featuring non-equilibrium glassy dynamics under temperature changes still await interpretation. There is a widespread feeling that temperature chaos (an extreme sensitivity of the glass to temperature changes) should play a major role but, up to now, this phenomenon has been investigated solely under equilibrium conditions. In fact, the very existence of a chaotic effect in the non-equilibrium dynamics is yet to be established. In this article, we tackle this problem through a large simulation of the 3D Edwards-Anderson model, carried out on the Janus II supercomputer. We find a dynamic effect that closely parallels equilibrium temperature chaos. This dynamic temperature-chaos effect is spatially heterogeneous to a large degree and turns out to be controlled by the spin-glass coherence length ξ. Indeed, an emerging length-scale ξ* rules the crossover from weak (at ξ ≪ ξ*) to strong chaos (ξ ≫ ξ*). Extrapolations of ξ* to relevant experimental conditions are provided.

Temperature chaos is present in off-equilibrium spin-glass dynamics

Gonzalez-Adalid Pemartin I.;Vincenzo Marinari;Paga I.;Parisi G.;Federico Ricci-Tersenghi;
2021

Abstract

Experiments featuring non-equilibrium glassy dynamics under temperature changes still await interpretation. There is a widespread feeling that temperature chaos (an extreme sensitivity of the glass to temperature changes) should play a major role but, up to now, this phenomenon has been investigated solely under equilibrium conditions. In fact, the very existence of a chaotic effect in the non-equilibrium dynamics is yet to be established. In this article, we tackle this problem through a large simulation of the 3D Edwards-Anderson model, carried out on the Janus II supercomputer. We find a dynamic effect that closely parallels equilibrium temperature chaos. This dynamic temperature-chaos effect is spatially heterogeneous to a large degree and turns out to be controlled by the spin-glass coherence length ξ. Indeed, an emerging length-scale ξ* rules the crossover from weak (at ξ ≪ ξ*) to strong chaos (ξ ≫ ξ*). Extrapolations of ξ* to relevant experimental conditions are provided.
2021
Istituto Applicazioni del Calcolo ''Mauro Picone''
Istituto di Nanotecnologia - NANOTEC - Sede Secondaria Roma
Spin Glass, Parallel Tempering, Temperature Chaos
File in questo prodotto:
File Dimensione Formato  
s42005-021-00565-9.pdf

accesso aperto

Descrizione: Complete Article
Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 1.91 MB
Formato Adobe PDF
1.91 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/532259
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 22
  • ???jsp.display-item.citation.isi??? 20
social impact