Titanium dioxide nanobelts were prepared via the alkali-hydrothermal method for application in chemical gas sensing. The formation process of TiO2-(B) nanobelts and their sensing properties were investigated in detail. FE-SEM was used to study the surface of the obtained structures. The TEM and XRD analyses show that the prepared TiO2 nanobelts are in the monoclinic phase. Furthermore, TEM shows the formation of porous-like morphology due to crystal defects in the TiO2-(B) nanobelts. The gas-sensing performance of the structure toward various concentrations of hydrogen, ethanol, acetone, nitrogen dioxide, and methane gases was studied at a temperature range between 100 and 500 °C. The fabricated sensor shows a high response toward acetone at a relatively low working temperature (150 °C), which is important for the development of low-power-consumption functional devices. Moreover, the obtained results indicate that monoclinic TiO2-B is a promising material for applications in chemo-resistive gas detectors.

Synthesis of TiO2-(B) Nanobelts for Acetone Sensing

Galstyan V.;
2023

Abstract

Titanium dioxide nanobelts were prepared via the alkali-hydrothermal method for application in chemical gas sensing. The formation process of TiO2-(B) nanobelts and their sensing properties were investigated in detail. FE-SEM was used to study the surface of the obtained structures. The TEM and XRD analyses show that the prepared TiO2 nanobelts are in the monoclinic phase. Furthermore, TEM shows the formation of porous-like morphology due to crystal defects in the TiO2-(B) nanobelts. The gas-sensing performance of the structure toward various concentrations of hydrogen, ethanol, acetone, nitrogen dioxide, and methane gases was studied at a temperature range between 100 and 500 °C. The fabricated sensor shows a high response toward acetone at a relatively low working temperature (150 °C), which is important for the development of low-power-consumption functional devices. Moreover, the obtained results indicate that monoclinic TiO2-B is a promising material for applications in chemo-resistive gas detectors.
2023
Istituto dei Materiali per l'Elettronica ed il Magnetismo - IMEM
acetone detection, chemical sensing, hydrothermal synthesis, TiO2, nanobelts
File in questo prodotto:
File Dimensione Formato  
Synthesis of TiO2-(B) Nanobelts for Acetone Sensing.pdf

accesso aperto

Descrizione: Articolo
Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 6.58 MB
Formato Adobe PDF
6.58 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/532265
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 5
social impact