Silicon quantum dots have been deposited on top of a 3-nm tunnel oxide by Low Pressure Chemical Vapour Deposition (LPCVD) and coated with a 7-nm Chemical Vapour Deposited (CVD) oxide. This stack was then incorporated in Metal-Oxide-Semiconductor structure and used as floating gate of a memory cell. The presence of 3 nm of tunnel oxides allows the injection of the charge by direct tunnel (DT) using low voltages for both program and erase operations. The charge stored in the quantum dots is able to produce a well-detectable flat band shift in the capacitors or, equivalently, a threshold voltage shift in the transistors. Furthermore, due to the presence Of SiO2 between the grains, the lateral charge loss is reduced and, thus, long retention time are possible. In this work we present good memory action characterised by low write voltages, write times of the order of milliseconds and long retention time in spite of the low tunnel oxide thickness.

Memory effects in MOS devices based on Si quantum dots

Crupi I;Lombardo S;Nicotra G;
2003

Abstract

Silicon quantum dots have been deposited on top of a 3-nm tunnel oxide by Low Pressure Chemical Vapour Deposition (LPCVD) and coated with a 7-nm Chemical Vapour Deposited (CVD) oxide. This stack was then incorporated in Metal-Oxide-Semiconductor structure and used as floating gate of a memory cell. The presence of 3 nm of tunnel oxides allows the injection of the charge by direct tunnel (DT) using low voltages for both program and erase operations. The charge stored in the quantum dots is able to produce a well-detectable flat band shift in the capacitors or, equivalently, a threshold voltage shift in the transistors. Furthermore, due to the presence Of SiO2 between the grains, the lateral charge loss is reduced and, thus, long retention time are possible. In this work we present good memory action characterised by low write voltages, write times of the order of milliseconds and long retention time in spite of the low tunnel oxide thickness.
2003
Istituto per la Microelettronica e Microsistemi - IMM
quantum dot
single electron
nanocrystal memory
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/53242
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 12
social impact