The grapevine (Vitis vinifera) is one of the most widely cultivated fruit crops globally, and one of its most important diseases in terms of economic losses is downy mildew, caused by Plasmopara viticola. Several wild Vitis species have been found to be resistant to this pathogen and have been used in breeding programs to introduce resistance traits to susceptible cultivars. Plant defense is based on different mechanisms, and volatile organic compounds (VOCs) play a major role in the response to insects and pathogens. Although grapevine resistance mechanisms and the production of secondary metabolites have been widely characterized in resistant genotypes, the emission of VOCs has not yet been investigated following P. viticola inoculation. A Proton Transfer Reaction-Time of Flight-Mass Spectrometer (PTR-ToF-MS) was used to analyze the VOCs emitted by in vitro-grown plants of grapevine genotypes with different levels of resistance. Downy mildew inoculation significantly increased the emission of monoterpenes and sesquiterpenes by the resistant SO4 and Kober 5BB genotypes, but not by the susceptible V. vinifera Pinot noir. Volatile terpenes were implicated in plant defense responses against pathogens, suggesting that they could play a major role in the resistance against downy mildew by direct toxicity or by inducing grapevine resistance. The grapevine genotypes differed in terms of the VOC emission pattern of both inoculated and uninoculated plants, indicating that PTR-ToF-MS could be used to screen hybrids with different levels of downy mildew resistance.

Emission of volatile sesquiterpenes and monoterpenes in grapevine genotypes following Plasmopara viticola inoculation in vitro

Lazazzara V.
Co-primo
;
2015

Abstract

The grapevine (Vitis vinifera) is one of the most widely cultivated fruit crops globally, and one of its most important diseases in terms of economic losses is downy mildew, caused by Plasmopara viticola. Several wild Vitis species have been found to be resistant to this pathogen and have been used in breeding programs to introduce resistance traits to susceptible cultivars. Plant defense is based on different mechanisms, and volatile organic compounds (VOCs) play a major role in the response to insects and pathogens. Although grapevine resistance mechanisms and the production of secondary metabolites have been widely characterized in resistant genotypes, the emission of VOCs has not yet been investigated following P. viticola inoculation. A Proton Transfer Reaction-Time of Flight-Mass Spectrometer (PTR-ToF-MS) was used to analyze the VOCs emitted by in vitro-grown plants of grapevine genotypes with different levels of resistance. Downy mildew inoculation significantly increased the emission of monoterpenes and sesquiterpenes by the resistant SO4 and Kober 5BB genotypes, but not by the susceptible V. vinifera Pinot noir. Volatile terpenes were implicated in plant defense responses against pathogens, suggesting that they could play a major role in the resistance against downy mildew by direct toxicity or by inducing grapevine resistance. The grapevine genotypes differed in terms of the VOC emission pattern of both inoculated and uninoculated plants, indicating that PTR-ToF-MS could be used to screen hybrids with different levels of downy mildew resistance.
2015
Istituto per la Protezione Sostenibile delle Piante - IPSP - Sede Secondaria Sesto Fiorentino (FI)
Istituto per la Protezione Sostenibile delle Piante - IPSP
downy mildew resistance
grapevine
in vitro plants
PTR-ToF-MS
volatile organic compounds
File in questo prodotto:
File Dimensione Formato  
algarra alarcon 2015 (2020_12_26 11_42_48 UTC).pdf

solo utenti autorizzati

Licenza: Altro tipo di licenza
Dimensione 590.16 kB
Formato Adobe PDF
590.16 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/532572
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 47
  • ???jsp.display-item.citation.isi??? 42
social impact