Cardiogenic shock (CS) portends a dismal prognosis if hypoperfusion triggers uncontrolled inflammatory and metabolic derangements. We sought to investigate metabolomic profiles and temporal changes in IL6, Ang-2, and markers of glycocalyx perturbation from admission to discharge in eighteen patients with heart failure complicated by CS (HF-CS). Biological samples were collected from 18 consecutive HF-CS patients at admission (T0), 48 h after admission (T1), and at discharge (T2). ELISA analytical techniques and targeted metabolomics were performed Seven patients (44%) died at in-hospital follow-up. Among the survivors, IL-6 and kynurenine were significantly reduced at discharge compared to baseline. Conversely, the amino acids arginine, threonine, glycine, lysine, and asparagine; the biogenic amine putrescine; multiple sphingolipids; and glycerophospholipids were significantly increased. Patients with HF-CS have a metabolomic fingerprint that might allow for tailored treatment strategies for the patients’ recovery or stabilization.

Cardiogenic Shock Integrated PHenotyping for Event Reduction: A Pilot Metabolomics Analysis

Campolo J;
2023

Abstract

Cardiogenic shock (CS) portends a dismal prognosis if hypoperfusion triggers uncontrolled inflammatory and metabolic derangements. We sought to investigate metabolomic profiles and temporal changes in IL6, Ang-2, and markers of glycocalyx perturbation from admission to discharge in eighteen patients with heart failure complicated by CS (HF-CS). Biological samples were collected from 18 consecutive HF-CS patients at admission (T0), 48 h after admission (T1), and at discharge (T2). ELISA analytical techniques and targeted metabolomics were performed Seven patients (44%) died at in-hospital follow-up. Among the survivors, IL-6 and kynurenine were significantly reduced at discharge compared to baseline. Conversely, the amino acids arginine, threonine, glycine, lysine, and asparagine; the biogenic amine putrescine; multiple sphingolipids; and glycerophospholipids were significantly increased. Patients with HF-CS have a metabolomic fingerprint that might allow for tailored treatment strategies for the patients’ recovery or stabilization.
2023
Istituto di Fisiologia Clinica - IFC - Sede Secondaria di Milano
cardiogenic shock, metabolomics
File in questo prodotto:
File Dimensione Formato  
2023 - IJMS 3 IF 6.208.pdf

accesso aperto

Descrizione: Cardiogenic Shock Integrated PHenotyping for Event Reduction: A Pilot Metabolomics Analysis
Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 722.88 kB
Formato Adobe PDF
722.88 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/532584
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 3
social impact