Mineral dust from desert areas accounts for a large portion of aerosols globally, estimated at 3–4 billion tons per year. Aerosols emitted from arid and semi-arid areas, e.g., from parched lakes or rivers, are transported over long distances and have effects on a global scale, affecting the planet’s radiative balance, atmospheric chemistry, cloud formation and precipitation, marine biological processes, air quality, and human health. Desert dust transport takes place in the atmosphere as the result of a dynamical sequence beginning with dust uplift from desert areas, then followed by the long-range transport and terminating with the surface deposition of mineral dust in areas even very far from dust sources. The Mediterranean basin is characterized by frequent dust intrusion events, particularly affecting Spain, France, Italy, and Greece. Such events contribute to the increase in PM10 and PM2.5 concentration values, causing legal threshold values to be exceeded. In recent years, these events have shown a non-negligible increase in frequency and intensity. The present work reports the results of an analysis of the dust events that in recent years (2018–2023) affected the Mediterranean area and in particular central Italy, focusing on the more recurrent meteorological configurations leading to long-range transport and on the consequent increase in aerosol concentration values. A method for desert intrusion episodes identification has been developed using both numerical forecast model data and PM10 observed data. A multi-year dataset has been analyzed by applying such an identification method and the resulting set of dust events episodes, affecting central Italy, has been studied in order to highlight their frequency on a seasonal basis and their interannual variability. In addition, a first attempt at a meteorological classification of desert intrusions has been carried out to identify the most recurrent circulation patterns related to dust intrusions. Understanding their annual and seasonal variations in frequency and intensity is a key topic, whose relevance is steeply growing in the context of ongoing climate change.

Long-Range Mineral Dust Transport Events in Mediterranean Countries

Francesca Calastrini
Primo
;
Gianni Messeri
Secondo
;
2024

Abstract

Mineral dust from desert areas accounts for a large portion of aerosols globally, estimated at 3–4 billion tons per year. Aerosols emitted from arid and semi-arid areas, e.g., from parched lakes or rivers, are transported over long distances and have effects on a global scale, affecting the planet’s radiative balance, atmospheric chemistry, cloud formation and precipitation, marine biological processes, air quality, and human health. Desert dust transport takes place in the atmosphere as the result of a dynamical sequence beginning with dust uplift from desert areas, then followed by the long-range transport and terminating with the surface deposition of mineral dust in areas even very far from dust sources. The Mediterranean basin is characterized by frequent dust intrusion events, particularly affecting Spain, France, Italy, and Greece. Such events contribute to the increase in PM10 and PM2.5 concentration values, causing legal threshold values to be exceeded. In recent years, these events have shown a non-negligible increase in frequency and intensity. The present work reports the results of an analysis of the dust events that in recent years (2018–2023) affected the Mediterranean area and in particular central Italy, focusing on the more recurrent meteorological configurations leading to long-range transport and on the consequent increase in aerosol concentration values. A method for desert intrusion episodes identification has been developed using both numerical forecast model data and PM10 observed data. A multi-year dataset has been analyzed by applying such an identification method and the resulting set of dust events episodes, affecting central Italy, has been studied in order to highlight their frequency on a seasonal basis and their interannual variability. In addition, a first attempt at a meteorological classification of desert intrusions has been carried out to identify the most recurrent circulation patterns related to dust intrusions. Understanding their annual and seasonal variations in frequency and intensity is a key topic, whose relevance is steeply growing in the context of ongoing climate change.
2024
Istituto per la BioEconomia - IBE
mineral desert dust; PM10; weather types classification
File in questo prodotto:
File Dimensione Formato  
air-02-00026_compressed.pdf

accesso aperto

Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 885.07 kB
Formato Adobe PDF
885.07 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/532598
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact