Proline-rich antimicrobial peptides (PrAMPs) are promising lead compounds for developing new antimicrobials; however, their narrow spectrum of action is limiting. PrAMPs kill bacteria binding to their ribosomes and inhibiting protein synthesis. In this study, 133 derivatives of the PrAMP Bac7(1–16) were synthesized to identify the crucial residues for ribosome inactivation and antimicrobial activity. Then, five new Bac7(1–16) derivatives were conceived and characterized by antibacterial and membrane permeabilization assays, X-ray crystallography, and molecular dynamics simulations. Some derivatives displayed broad spectrum activity, encompassing Escherichia coli, Klebsiella pneumoniae, Acinetobacter baumanii, Pseudomonas aeruginosa, and Staphylococcus aureus. Two peptides out of five acquired a weak membrane-perturbing activity while maintaining the ability to inhibit protein synthesis. These derivatives became independent of the SbmA transporter, commonly used by native PrAMPs, suggesting that they obtained a novel route to enter bacterial cells. PrAMP-derived compounds could become new-generation antimicrobials to combat antibiotic-resistant pathogens.
Proline-rich antimicrobial peptides (PrAMPs) are promising lead compounds for developing new antimicrobials; however, their narrow spectrum of action is limiting. PrAMPs kill bacteria binding to their ribosomes and inhibiting protein synthesis. In this study, 133 derivatives of the PrAMP Bac7(1-16) were synthesized to identify the crucial residues for ribosome inactivation and antimicrobial activity. Then, five new Bac7(1-16) derivatives were conceived and characterized by antibacterial and membrane permeabilization assays, X-ray crystallography, and molecular dynamics simulations. Some derivatives displayed broad spectrum activity, encompassing Escherichia coli, Klebsiella pneumoniae, Acinetobacter baumanii, Pseudomonas aeruginosa, and Staphylococcus aureus. Two peptides out of five acquired a weak membrane-perturbing activity while maintaining the ability to inhibit protein synthesis. These derivatives became independent of the SbmA transporter, commonly used by native PrAMPs, sugges...
Peptide inhibitors of bacterial protein synthesis with broad spectrum and SbmA-independent bactericidal activity against clinical pathogens
Alessandra Magistrato;
2020
Abstract
Proline-rich antimicrobial peptides (PrAMPs) are promising lead compounds for developing new antimicrobials; however, their narrow spectrum of action is limiting. PrAMPs kill bacteria binding to their ribosomes and inhibiting protein synthesis. In this study, 133 derivatives of the PrAMP Bac7(1-16) were synthesized to identify the crucial residues for ribosome inactivation and antimicrobial activity. Then, five new Bac7(1-16) derivatives were conceived and characterized by antibacterial and membrane permeabilization assays, X-ray crystallography, and molecular dynamics simulations. Some derivatives displayed broad spectrum activity, encompassing Escherichia coli, Klebsiella pneumoniae, Acinetobacter baumanii, Pseudomonas aeruginosa, and Staphylococcus aureus. Two peptides out of five acquired a weak membrane-perturbing activity while maintaining the ability to inhibit protein synthesis. These derivatives became independent of the SbmA transporter, commonly used by native PrAMPs, sugges...| File | Dimensione | Formato | |
|---|---|---|---|
|
2020_Jmedchem_Peptide inhibitors of bacterial protein synthesis with broad spectrum and SbmA-independent bactericidal activity against clinical pathogens.pdf
non disponibili
Descrizione: This document is the Accepted Manuscript version of a Published Work that appeared in final form in Journal of Medicinal Chemistry , Copyright © 2020 American Chemical Society, after peer review and technical editing by the publisher. https://dx.doi.org/10.1021/acs.jmedchem.0c00665
Tipologia:
Documento in Post-print
Licenza:
Altro tipo di licenza
Dimensione
947.93 kB
Formato
Adobe PDF
|
947.93 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


