The aim of the present paper is to provide a preliminary investigation of the thermodynamics of particles obeying monotone statistics. To render the potential physical applications realistic, we propose a modified scheme called block-monotone, based on a partial order arising from the natural one on the spectrum of a positive Hamiltonian with compact resolvent. The block-monotone scheme is never comparable with the weak monotone one and is reduced to the usual monotone scheme whenever all the eigenvalues of the involved Hamiltonian are non-degenerate. Through a detailed analysis of a model based on the quantum harmonic oscillator, we can see that: (a) the computation of the grand-partition function does not require the Gibbs correction factor (Formula presented.) (connected with the indistinguishability of particles) in the various terms of its expansion with respect to the activity; and (b) the decimation of terms contributing to the grand-partition function leads to a kind of “exclusion principle” analogous to the Pauli exclusion principle enjoined by Fermi particles, which is more relevant in the high-density regime and becomes negligible in the low-density regime, as expected.

On the Thermodynamics of Particles Obeying Monotone Statistics

Marullo C.
2023

Abstract

The aim of the present paper is to provide a preliminary investigation of the thermodynamics of particles obeying monotone statistics. To render the potential physical applications realistic, we propose a modified scheme called block-monotone, based on a partial order arising from the natural one on the spectrum of a positive Hamiltonian with compact resolvent. The block-monotone scheme is never comparable with the weak monotone one and is reduced to the usual monotone scheme whenever all the eigenvalues of the involved Hamiltonian are non-degenerate. Through a detailed analysis of a model based on the quantum harmonic oscillator, we can see that: (a) the computation of the grand-partition function does not require the Gibbs correction factor (Formula presented.) (connected with the indistinguishability of particles) in the various terms of its expansion with respect to the activity; and (b) the decimation of terms contributing to the grand-partition function leads to a kind of “exclusion principle” analogous to the Pauli exclusion principle enjoined by Fermi particles, which is more relevant in the high-density regime and becomes negligible in the low-density regime, as expected.
2023
Istituto di Calcolo e Reti ad Alte Prestazioni - ICAR
exclusion principle
high- and low-density regimes
monotone grand-canonical ensemble
thermodynamics of grand-canonical ensemble
File in questo prodotto:
File Dimensione Formato  
entropy-25-00216-v2.pdf

accesso aperto

Licenza: Nessuna licenza dichiarata (non attribuibile a prodotti successivi al 2023)
Dimensione 515.66 kB
Formato Adobe PDF
515.66 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/532831
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact