Aerosols and primary biological aerosol particles (PBAPs) play an important role in regulating the global climate, but information summarizing the available knowledge is limited. Here, we present a systematic review of in situ studies performed in the last 35 years on aerosols-PBAPs in Brazil, with 212 studies encompassing 474 cases. The Amazon rainforest was the most studied biome, represented by 72% of cases, followed by the Atlantic Forest with 18%. Studies focusing the Amazon mostly investigated climate-related issues and aerosol physics, with less than 5% examining the biological identity of aerosols, whereas outside the Amazon, this number reached 16%. Whilst more than half of the cases within Amazon (55%) were held at seven sampling sites only, conclusions were mainly extrapolated to the entire biome. Contrarily, research beyond the Amazon has mostly addressed the temporal and biological characterisation of PBAPs, and not only is it scattered, but also scarce. Regarding sampling efforts, most cases (72%) had fewer than 100 days of sampling, and 60% of them spanned less than half a year of study. We argue that scientists should produce more detailed/complete assessments of aerosols-PBAPs in Brazil as a whole, particularly considering their biological identity, given their importance to global climate regulation.

Thirty-Five Years of Aerosol–PBAP in situ Research in Brazil: The Need to Think outside the Amazonian Box

Carotenuto F.;
2023

Abstract

Aerosols and primary biological aerosol particles (PBAPs) play an important role in regulating the global climate, but information summarizing the available knowledge is limited. Here, we present a systematic review of in situ studies performed in the last 35 years on aerosols-PBAPs in Brazil, with 212 studies encompassing 474 cases. The Amazon rainforest was the most studied biome, represented by 72% of cases, followed by the Atlantic Forest with 18%. Studies focusing the Amazon mostly investigated climate-related issues and aerosol physics, with less than 5% examining the biological identity of aerosols, whereas outside the Amazon, this number reached 16%. Whilst more than half of the cases within Amazon (55%) were held at seven sampling sites only, conclusions were mainly extrapolated to the entire biome. Contrarily, research beyond the Amazon has mostly addressed the temporal and biological characterisation of PBAPs, and not only is it scattered, but also scarce. Regarding sampling efforts, most cases (72%) had fewer than 100 days of sampling, and 60% of them spanned less than half a year of study. We argue that scientists should produce more detailed/complete assessments of aerosols-PBAPs in Brazil as a whole, particularly considering their biological identity, given their importance to global climate regulation.
2023
Istituto per la BioEconomia - IBE
Amazon
Atlantic Forest
ATTO
bioaerosol
climate regulation
fungi
ice nucleation
File in questo prodotto:
File Dimensione Formato  
climate-11-00017.pdf

accesso aperto

Licenza: Creative commons
Dimensione 2.31 MB
Formato Adobe PDF
2.31 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/532855
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 1
social impact