Image segmentation is a crucial stage in digital image processing used to obtain a more straightforward representation of images. Although classic bi-level segmentation is a relatively simple task, it only suffices to analyze rather simple images. More complex real-life scenarios such as medical imaging processing usually require multi-level segmentation to differentiate between the many regions of interest present in the original images. Traditional histogram-based approaches for multi-level segmentation tend to perform suboptimally, with the best performing being computationally expensive. This difficult compromise between performance and computational cost has led to the proposal of new approaches mixing a variety of optimization algorithms and statistical criteria. Despite the success of these new approaches, there is still room for improvement. It is under these circumstances that evolutionary algorithms like the cluster chaotic optimization (CCO) become relevant. The CCO takes advantage of the classification procedures of clustering techniques and the randomness of chaotic sequences for encouraging the search strategy. This paper proposes a novel method based on the CCO algorithm named minimum cross-entropy multi-level segmentation CCO (CEMS-CCO). The CEMS-CCO employs the cross-entropy as its fitness function and the CCO capabilities to deal with multimodal functions to search for the optimal solution to the multi-level segmentation problem. The CEMS-CCO shows competitive results for medical images multi-level segmentation regarding different quality metrics. Furthermore, its robustness and effectiveness are tested through the analysis of well-known benchmark images. Statistical analysis of the experimental results shows that the proposed CEMS-CCO technique outperforms state-of-the-art algorithms.

An accurate Cluster chaotic optimization approach for digital medical image segmentation

Fernando Wario;
2021

Abstract

Image segmentation is a crucial stage in digital image processing used to obtain a more straightforward representation of images. Although classic bi-level segmentation is a relatively simple task, it only suffices to analyze rather simple images. More complex real-life scenarios such as medical imaging processing usually require multi-level segmentation to differentiate between the many regions of interest present in the original images. Traditional histogram-based approaches for multi-level segmentation tend to perform suboptimally, with the best performing being computationally expensive. This difficult compromise between performance and computational cost has led to the proposal of new approaches mixing a variety of optimization algorithms and statistical criteria. Despite the success of these new approaches, there is still room for improvement. It is under these circumstances that evolutionary algorithms like the cluster chaotic optimization (CCO) become relevant. The CCO takes advantage of the classification procedures of clustering techniques and the randomness of chaotic sequences for encouraging the search strategy. This paper proposes a novel method based on the CCO algorithm named minimum cross-entropy multi-level segmentation CCO (CEMS-CCO). The CEMS-CCO employs the cross-entropy as its fitness function and the CCO capabilities to deal with multimodal functions to search for the optimal solution to the multi-level segmentation problem. The CEMS-CCO shows competitive results for medical images multi-level segmentation regarding different quality metrics. Furthermore, its robustness and effectiveness are tested through the analysis of well-known benchmark images. Statistical analysis of the experimental results shows that the proposed CEMS-CCO technique outperforms state-of-the-art algorithms.
2021
Istituto di Scienze e Tecnologie della Cognizione - ISTC
Cluster chaotic optimization
Digital image segmentation
Digital medical image
Minimum cross-entropy
Multi-level segmentation
Optimization process
File in questo prodotto:
File Dimensione Formato  
s00521-021-05771-8.pdf

solo utenti autorizzati

Descrizione: Avalos, O., Ayala, E., Wario, F. et al. An accurate Cluster chaotic optimization approach for digital medical image segmentation. Neural Comput & Applic 33, 10057–10091 (2021). https://doi.org/10.1007/s00521-021-05771-8
Tipologia: Versione Editoriale (PDF)
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 9.94 MB
Formato Adobe PDF
9.94 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/532899
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 7
  • ???jsp.display-item.citation.isi??? 6
social impact