Sodium lignosulfonate (LS) was valorized to low molecular weight (Mw) fractions by combining solvothermal (SF) and catalytic hydrogenolysis/hydrogenation fragmentation (SHF) in a continuous flow system. This was achieved in either alcohol/H2O (EtOH/H2O or MeOH/H2O) or H2O as a solvent and Ni on nitrogen-doped carbon as a catalyst. The tunability according to the temperature of both SF and catalytic SHF of LS has been separately investigated at 150 °C, 200 °C, and 250 °C. In SF, the minimal Mw was 2994 g mol-1 at 250 °C with a dispersity (Đ) of 5.3 using MeOH/H2O. In catalytic SHF using MeOH/H2O, extremely low Mw was found (433 mg gLS-1) with a Đ of 1.2 combined with 34 mg gLS-1. The monomer yield was improved to 42 mg gLS-1 using dual catalytic beds. These results provide direct evidence that lignin is an unstable polymer at elevated temperatures and could be efficiently deconstructed under hydrothermal conditions with and without a catalyst. This journal is

Controlled lignosulfonate depolymerizationviasolvothermal fragmentation coupled with catalytic hydrogenolysis/hydrogenation in a continuous flow reactor

Brandi, Francesco;
2021

Abstract

Sodium lignosulfonate (LS) was valorized to low molecular weight (Mw) fractions by combining solvothermal (SF) and catalytic hydrogenolysis/hydrogenation fragmentation (SHF) in a continuous flow system. This was achieved in either alcohol/H2O (EtOH/H2O or MeOH/H2O) or H2O as a solvent and Ni on nitrogen-doped carbon as a catalyst. The tunability according to the temperature of both SF and catalytic SHF of LS has been separately investigated at 150 °C, 200 °C, and 250 °C. In SF, the minimal Mw was 2994 g mol-1 at 250 °C with a dispersity (Đ) of 5.3 using MeOH/H2O. In catalytic SHF using MeOH/H2O, extremely low Mw was found (433 mg gLS-1) with a Đ of 1.2 combined with 34 mg gLS-1. The monomer yield was improved to 42 mg gLS-1 using dual catalytic beds. These results provide direct evidence that lignin is an unstable polymer at elevated temperatures and could be efficiently deconstructed under hydrothermal conditions with and without a catalyst. This journal is
2021
Istituto di Chimica dei Composti OrganoMetallici - ICCOM -
lignosulfonate
nitrogen doped carbon
flow chemistry
lignocellulosic biomass
File in questo prodotto:
File Dimensione Formato  
d1gc01714d.pdf

accesso aperto

Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 4.25 MB
Formato Adobe PDF
4.25 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/532914
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 20
  • ???jsp.display-item.citation.isi??? 21
social impact