The water retention curve, which relates the matric potential, ψ, to the water content, θ, is essential to describe the flow processes in the unsaturated zone and provides useful information for environmental and engineering applications. There are few studies devoted to measuring the rock water retention curves due to the rock’s tightness, which makes it more technically difficult to use specific methods. In this study, we tested four different methods to measure water retention curves of two lithotypes of carbonate porous rocks with the aim to find the most effective to be applied to rock samples. Suction table, evaporation, Quasi-Steady Centrifuge, and WP4-T dewpoint potentiameter methods have been applied. The Quasi-Steady Centrifuge method proved to be the only one capable of determining water retention curves in the entire water content range and capturing the bimodality of the tested media with respect to the other methods. The measured water retention data were fitted with HYPROP-FIT software that allows us to accurately describe the WRCs and obtain critical parameters for the numerical simulation of flow and transport through the vadose zone, which plays a key role in various environmental issues.

HYPROP-FIT to Model Rock Water Retention Curves Estimated by Different Methods

Caputo M. C.
Writing – Review & Editing
;
De Carlo L.;Turturro A. C.
2022

Abstract

The water retention curve, which relates the matric potential, ψ, to the water content, θ, is essential to describe the flow processes in the unsaturated zone and provides useful information for environmental and engineering applications. There are few studies devoted to measuring the rock water retention curves due to the rock’s tightness, which makes it more technically difficult to use specific methods. In this study, we tested four different methods to measure water retention curves of two lithotypes of carbonate porous rocks with the aim to find the most effective to be applied to rock samples. Suction table, evaporation, Quasi-Steady Centrifuge, and WP4-T dewpoint potentiameter methods have been applied. The Quasi-Steady Centrifuge method proved to be the only one capable of determining water retention curves in the entire water content range and capturing the bimodality of the tested media with respect to the other methods. The measured water retention data were fitted with HYPROP-FIT software that allows us to accurately describe the WRCs and obtain critical parameters for the numerical simulation of flow and transport through the vadose zone, which plays a key role in various environmental issues.
2022
Istituto di Ricerca Sulle Acque - IRSA - Sede Secondaria Bari
bimodal hydraulic functions
evaporation method
Quasi-Steady Centrifuge method
suction table method
unsaturated carbonate rock
WP4-T dewpoint potentiameter
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/532917
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ente

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 8
social impact