Network alignment is a fundamental task in network analysis. In the biological field, where the protein–protein interaction (PPI) is represented as a graph, network alignment allowed the discovery of underlying biological knowledge such as conserved evolutionary pathways and functionally conserved proteins throughout different species. A recent trend in network science concerns network embedding, i.e., the modelling of nodes in a network as a low-dimensional feature vector. In this survey, we present an overview of current PPI network embedding alignment methods, a comparison among them, and a comparison to classical PPI network alignment algorithms. The results of this comparison highlight that: (i) only five network embeddings for network alignment algorithms have been applied in the biological context, whereas the literature presents several classical network alignment algorithms; (ii) there is a need for developing an evaluation framework that may enable a unified comparison between different algorithms; (iii) the majority of the proposed algorithms perform network embedding through matrix factorization-based techniques; (iv) three out of five algorithms leverage external biological resources, while the remaining two are designed for domain agnostic network alignment and tested on PPI networks; (v) two algorithms out of three are stated to perform multi-network alignment, while the remaining perform pairwise network alignment.

An Extensive Assessment of Network Embedding in PPI Network Alignment

Marzia Settino;Mario Cannataro
2022

Abstract

Network alignment is a fundamental task in network analysis. In the biological field, where the protein–protein interaction (PPI) is represented as a graph, network alignment allowed the discovery of underlying biological knowledge such as conserved evolutionary pathways and functionally conserved proteins throughout different species. A recent trend in network science concerns network embedding, i.e., the modelling of nodes in a network as a low-dimensional feature vector. In this survey, we present an overview of current PPI network embedding alignment methods, a comparison among them, and a comparison to classical PPI network alignment algorithms. The results of this comparison highlight that: (i) only five network embeddings for network alignment algorithms have been applied in the biological context, whereas the literature presents several classical network alignment algorithms; (ii) there is a need for developing an evaluation framework that may enable a unified comparison between different algorithms; (iii) the majority of the proposed algorithms perform network embedding through matrix factorization-based techniques; (iv) three out of five algorithms leverage external biological resources, while the remaining two are designed for domain agnostic network alignment and tested on PPI networks; (v) two algorithms out of three are stated to perform multi-network alignment, while the remaining perform pairwise network alignment.
2022
Istituto di Calcolo e Reti ad Alte Prestazioni - ICAR
network alignment
network embedding
PPI
File in questo prodotto:
File Dimensione Formato  
PUB 1 - PPI_NetworkEmbedding.pdf

accesso aperto

Licenza: Nessuna licenza dichiarata (non attribuibile a prodotti successivi al 2023)
Dimensione 486.56 kB
Formato Adobe PDF
486.56 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/532961
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 9
  • ???jsp.display-item.citation.isi??? 7
social impact