Microcalcifications (MC) are observed in various tissues and in relation to several diseases. For breast cancer, recent studies have reported differences in the nature of the MC and correlations to the degree of malignancy of the neoplasm. Here, investigations of benign, ductal carcinoma in situ (DCIS) and invasive ductal carcinoma (IDC) breast MC using X-ray fluorescence, X-ray absorption spectroscopy and wide-angle X-ray scattering are reported. While Mg has been observed in all MC, only for the benign MC has a rim of crystalline whitlockite been identified as a minor crystalline phase in addition to the major hydroxyapatite (HAP) one. MC in DCIS and IDC tissue exhibit a higher abundance of a high-crystallinity HAP phase in comparison with the less well ordered MC in the benign tissue. Moreover, the distribution of other trace elements in the MC, such as Na, S, Cl, Sr and Y, is observed. For the quantitative analysis of the elemental maps, the experimentally determined sample thickness in each pixel has been incorporated as an additional parameter in the fitting process to account for sample roughness.

Microcalcifications in breast cancer tissue studied by X-ray absorption, emission, scattering and diffraction

Altamura, Davide;De Caro, Liberato;Vanna, Renzo;Giannini, Cinzia
2025

Abstract

Microcalcifications (MC) are observed in various tissues and in relation to several diseases. For breast cancer, recent studies have reported differences in the nature of the MC and correlations to the degree of malignancy of the neoplasm. Here, investigations of benign, ductal carcinoma in situ (DCIS) and invasive ductal carcinoma (IDC) breast MC using X-ray fluorescence, X-ray absorption spectroscopy and wide-angle X-ray scattering are reported. While Mg has been observed in all MC, only for the benign MC has a rim of crystalline whitlockite been identified as a minor crystalline phase in addition to the major hydroxyapatite (HAP) one. MC in DCIS and IDC tissue exhibit a higher abundance of a high-crystallinity HAP phase in comparison with the less well ordered MC in the benign tissue. Moreover, the distribution of other trace elements in the MC, such as Na, S, Cl, Sr and Y, is observed. For the quantitative analysis of the elemental maps, the experimentally determined sample thickness in each pixel has been incorporated as an additional parameter in the fitting process to account for sample roughness.
2025
Istituto di Cristallografia - IC
Istituto di fotonica e nanotecnologie - IFN
breast cancer; microcalcifications; whitlockite; hydroxyapatite; trace elements; magnesium; wide-angle X-ray scattering; X-ray fluorescence; XANES
File in questo prodotto:
File Dimensione Formato  
Giannini_JApplCryst_2025-SI.pdf

accesso aperto

Tipologia: Altro materiale allegato
Licenza: Creative commons
Dimensione 3.87 MB
Formato Adobe PDF
3.87 MB Adobe PDF Visualizza/Apri
Giannini_JApplCryst_2025.pdf

accesso aperto

Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 3.06 MB
Formato Adobe PDF
3.06 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/533201
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact