Band bending in colloidal quantum dot (CQD) solids has become important in driving charge carriers through devices. This is typically a result of band alignments at junctions in the device. Whether band bending is intrinsic to CQD solids, i.e. is band bending present at the surface-vacuum interface, has previously been unanswered. Here we use photoemission surface photovoltage measurements to show that depletion regions are present at the surface of n and p-type CQD solids with various ligand treatments (EDT, MPA, PbI2, MAI/PbI2). Using laser-pump photoemission-probe time-resolved measurements, we show that the timescale of carrier dynamics in the surface of CQD solids can vary over at least 6 orders of magnitude, with the fastest dynamics on the order of microseconds in PbS-MAI/PbI2 solids and on the order of seconds for PbS-MPA and PbS-PbI2. By investigating the surface chemistry of the solids, we find a correlation between the carrier dynamics timescales and the presence of oxygen contaminants, which we suggest are responsible for the slower dynamics due to deep trap formation. This journal is

Surface band bending and carrier dynamics in colloidal quantum dot solids

Igor Pis;
2021

Abstract

Band bending in colloidal quantum dot (CQD) solids has become important in driving charge carriers through devices. This is typically a result of band alignments at junctions in the device. Whether band bending is intrinsic to CQD solids, i.e. is band bending present at the surface-vacuum interface, has previously been unanswered. Here we use photoemission surface photovoltage measurements to show that depletion regions are present at the surface of n and p-type CQD solids with various ligand treatments (EDT, MPA, PbI2, MAI/PbI2). Using laser-pump photoemission-probe time-resolved measurements, we show that the timescale of carrier dynamics in the surface of CQD solids can vary over at least 6 orders of magnitude, with the fastest dynamics on the order of microseconds in PbS-MAI/PbI2 solids and on the order of seconds for PbS-MPA and PbS-PbI2. By investigating the surface chemistry of the solids, we find a correlation between the carrier dynamics timescales and the presence of oxygen contaminants, which we suggest are responsible for the slower dynamics due to deep trap formation. This journal is
2021
Istituto Officina dei Materiali - IOM -
Carrier Dynamics
Ligand Treatments
Colloidal Quantum Dots (CQDs)
Surface Photovoltage (SPV)
Bend bending
File in questo prodotto:
File Dimensione Formato  
Clark_Nanoscale_2021_accepted.pdf

accesso aperto

Descrizione: Full length article
Tipologia: Documento in Post-print
Licenza: Altro tipo di licenza
Dimensione 2.84 MB
Formato Adobe PDF
2.84 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/533269
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 8
  • ???jsp.display-item.citation.isi??? 8
social impact