This work proposes a novel approach to text categorization - for unknown categories - in the context of scientific literature, using Natural Language Processing techniques. The study leverages the power of pre-trained language models, specifically SciBERT, to extract meaningful representations of abstracts from the ArXiv dataset. Text categorization is performed using the K-Means algorithm, and the optimal number of clusters is determined based on the Silhouette score. The results demonstrate that the proposed approach captures subject information more effectively than the traditional arXiv labeling system, leading to improved text categorization. The approach offers potential for better navigation and recommendation systems in the rapidly growing landscape of scientific research literature.

Beyond original Research Articles Categorization via NLP

Turrisi R.
2023

Abstract

This work proposes a novel approach to text categorization - for unknown categories - in the context of scientific literature, using Natural Language Processing techniques. The study leverages the power of pre-trained language models, specifically SciBERT, to extract meaningful representations of abstracts from the ArXiv dataset. Text categorization is performed using the K-Means algorithm, and the optimal number of clusters is determined based on the Silhouette score. The results demonstrate that the proposed approach captures subject information more effectively than the traditional arXiv labeling system, leading to improved text categorization. The approach offers potential for better navigation and recommendation systems in the rapidly growing landscape of scientific research literature.
2023
Istituto di Matematica Applicata e Tecnologie Informatiche - IMATI - Sede Secondaria Genova
Natural Language Processing
Research Article categorization
Semi-supervised learning
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/533325
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ente

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact