In this work the authors have performed the synthesis of FexCo100-x (0<100) alloy nanoparticles (NPs) with different compositions, as well as pure Fe and Co NPs for comparison, by a chemical reduction technique. The subsequent characterization demonstrated excellent quality NPs with the expected bcc cubic (for Fe and FeCo alloys) and hcp hexagonal (for Co NPs) structures showing a room temperature magnetization as high as 235 emu/g for the Fe66Co34 composition alloy. Nevertheless, this soft magnetic character is accompanied by determined values of effective anisotropy as high as 2 MJ/m3 . Aiming to deep into the properties of these FeCo alloys as well as to unveil the origin of that observed high anisotropy value, we now present an extensive study at the nanoscale of the synthesized Fe, Co and FexCo100-x alloy nanoparticles by using nuclear techniques as neutron powder diffraction, EXAFS and XANES spectroscopies. M¨ ossbauer spectroscopy revealed that the FeCo alloys are in an A2 disordered solid solution. The obtained results, combined with AFM/MFM images, have demonstrated that despite the cubic bcc structure observed for all FeCo alloys (in excellent concordance with the pure Fe one) the NPs show a "flaky" shape of 50–60 nm size (diameter) but only 3–4 nm thickness, giving rise to a strong shape anisotropy contribution to the observed total effective anisotropy.
Structural and magnetic properties of high magnetization FexCo100-x nanoparticles investigated at the nanoscale: Unveiling the origin of the observed anisotropy
Mondelli C.;D'Acapito F.;
2025
Abstract
In this work the authors have performed the synthesis of FexCo100-x (0<100) alloy nanoparticles (NPs) with different compositions, as well as pure Fe and Co NPs for comparison, by a chemical reduction technique. The subsequent characterization demonstrated excellent quality NPs with the expected bcc cubic (for Fe and FeCo alloys) and hcp hexagonal (for Co NPs) structures showing a room temperature magnetization as high as 235 emu/g for the Fe66Co34 composition alloy. Nevertheless, this soft magnetic character is accompanied by determined values of effective anisotropy as high as 2 MJ/m3 . Aiming to deep into the properties of these FeCo alloys as well as to unveil the origin of that observed high anisotropy value, we now present an extensive study at the nanoscale of the synthesized Fe, Co and FexCo100-x alloy nanoparticles by using nuclear techniques as neutron powder diffraction, EXAFS and XANES spectroscopies. M¨ ossbauer spectroscopy revealed that the FeCo alloys are in an A2 disordered solid solution. The obtained results, combined with AFM/MFM images, have demonstrated that despite the cubic bcc structure observed for all FeCo alloys (in excellent concordance with the pure Fe one) the NPs show a "flaky" shape of 50–60 nm size (diameter) but only 3–4 nm thickness, giving rise to a strong shape anisotropy contribution to the observed total effective anisotropy.File | Dimensione | Formato | |
---|---|---|---|
FeCo20241-s2.0-S092583882403799X-main.pdf
accesso aperto
Tipologia:
Versione Editoriale (PDF)
Licenza:
Creative commons
Dimensione
7.28 MB
Formato
Adobe PDF
|
7.28 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.