Perovskite bimetallic oxides as electrode material blends can be an appropriate method to enhance the supercapacitor properties. In the present research, SrO 0.5:MnO 0.5 nanostructures (NS) were synthesized by a facile co-precipitation method and calcinated at 750–800°C. Crystal structure of SrO 0.5:MnO 0.5 NS were characterized by X-ray diffraction, surface chemical composition and chemical bond analysis, and dispersion of SrO into MnO was confirmed by X-ray photoelectron spectral studies. Structural morphology was analyzed from scanning electron microscopy. Optical properties of SrO 0.5:MnO 0.5 NS were studied using UV-Visible spectrophotometer and SrO 0.5 and MnO 0.5 NS showed ∼75 nm grain, ∼ 64 nm grain boundary distance, with two maxima at 261 nm and 345 nm as intensity of absorption patterns, respectively. The synthesized SrO 0.5:MnO 0.5 NS exhibited high specific capacitance of 392.8 F/g at a current density of 0.1 A/g. Electrochemical impedance spectroscopy results indicated low resistance and very low time constant of 0.2 s ∼73% of the capacitance was retained after 1000 galvanostatic charge-discharge (GCD) cycles. These findings indicate that SrO 0.5:MnO 0.5 bimetallic oxide material could be a promising electrode material for electrochemical energy storage systems.

Facile synthesis of novel SrO 0.5:MnO 0.5 bimetallic oxide nanostructure as a high-performance electrode material for supercapacitors

De Padova, Paola;
2022

Abstract

Perovskite bimetallic oxides as electrode material blends can be an appropriate method to enhance the supercapacitor properties. In the present research, SrO 0.5:MnO 0.5 nanostructures (NS) were synthesized by a facile co-precipitation method and calcinated at 750–800°C. Crystal structure of SrO 0.5:MnO 0.5 NS were characterized by X-ray diffraction, surface chemical composition and chemical bond analysis, and dispersion of SrO into MnO was confirmed by X-ray photoelectron spectral studies. Structural morphology was analyzed from scanning electron microscopy. Optical properties of SrO 0.5:MnO 0.5 NS were studied using UV-Visible spectrophotometer and SrO 0.5 and MnO 0.5 NS showed ∼75 nm grain, ∼ 64 nm grain boundary distance, with two maxima at 261 nm and 345 nm as intensity of absorption patterns, respectively. The synthesized SrO 0.5:MnO 0.5 NS exhibited high specific capacitance of 392.8 F/g at a current density of 0.1 A/g. Electrochemical impedance spectroscopy results indicated low resistance and very low time constant of 0.2 s ∼73% of the capacitance was retained after 1000 galvanostatic charge-discharge (GCD) cycles. These findings indicate that SrO 0.5:MnO 0.5 bimetallic oxide material could be a promising electrode material for electrochemical energy storage systems.
2022
Istituto di Struttura della Materia - ISM - Sede Roma Tor Vergata
bimetallic
co-precipitation
electrochemical
energy storage
MnO
Nanostructures
SrO
supercapacitor
File in questo prodotto:
File Dimensione Formato  
adimule-et-al-2022-facile-synthesis-of-novel-sro-0-5-mno-0-5-bimetallic-oxide-nanostructure-as-a-high-performance.pdf

accesso aperto

Descrizione: Articolo pubblicato
Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 2.01 MB
Formato Adobe PDF
2.01 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/533559
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 17
  • ???jsp.display-item.citation.isi??? 14
social impact