NHI (Normalized Hotspot Indices) is an original multichannel algorithm recently developed for mapping volcanic thermal anomalies in daylight conditions by means of infrared Sentinel 2 MSI and Landsat 8 OLI data. The algorithm, which uses two normalized indices analyzing SWIR (Shortwave Infrared) and NIR (Near Infrared) radiances, was tested with success in different volcanic areas, assessing results by means of independent ground and satellite-based observations. Here we present and describe the NHI-based tool, which exploits the high computation capabilities of Google Earth Engine to perform the rapid mapping of hot volcanic features at a global scale. The tool allows the users to retrieve information also about changes of thermal volcanic activity, giving the opportunity of performing time series analysis of hotspot pixel number and total SWIR radiance. Advantages of using the NHI tool as a complement to current satellite-based volcanoes monitoring systems are then analysed and discussed, such as its future upgrades.
A Google Earth Engine application for mapping volcanic thermal anomalies at a global scale by means of Sentinel 2 {MSI} and Landsat 8 {OLI} data
Francesco Marchese;Alfredo Falconieri;Giuseppe Mazzeo;Nicola Pergola
2020
Abstract
NHI (Normalized Hotspot Indices) is an original multichannel algorithm recently developed for mapping volcanic thermal anomalies in daylight conditions by means of infrared Sentinel 2 MSI and Landsat 8 OLI data. The algorithm, which uses two normalized indices analyzing SWIR (Shortwave Infrared) and NIR (Near Infrared) radiances, was tested with success in different volcanic areas, assessing results by means of independent ground and satellite-based observations. Here we present and describe the NHI-based tool, which exploits the high computation capabilities of Google Earth Engine to perform the rapid mapping of hot volcanic features at a global scale. The tool allows the users to retrieve information also about changes of thermal volcanic activity, giving the opportunity of performing time series analysis of hotspot pixel number and total SWIR radiance. Advantages of using the NHI tool as a complement to current satellite-based volcanoes monitoring systems are then analysed and discussed, such as its future upgrades.| File | Dimensione | Formato | |
|---|---|---|---|
|
Genzano_EGU2020.pdf
solo utenti autorizzati
Licenza:
Creative commons
Dimensione
51.13 kB
Formato
Adobe PDF
|
51.13 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


