Image enhancement deep neural networks (DNN) can improve signal to noise ratio or resolution of optically collected visual information. The literature reports a variety of approaches with varying effectiveness. All these algorithms rely on arbitrary data (the pixels’ count-rate) normalization, making their performance strngly affected by dataset or user-specific data premanipulation. We developed a DNN algorithm capable to enhance images signal-to-noise surpassing previous algorithms. Our model stems from the nature of the photon detection process which is characterized by an inherently Poissonian statistics. Our algorithm is thus driven by distance between probability functions instead than relying on the sole count-rate, producing high performance results especially in high-dynamic-range images. Moreover, it does not require any arbitrary image renormalization other than the transformation of the camera’s count-rate into photon-number.

Physics-informed deep neural network for image denoising

Xypakis E.;Leonetti M.
2023

Abstract

Image enhancement deep neural networks (DNN) can improve signal to noise ratio or resolution of optically collected visual information. The literature reports a variety of approaches with varying effectiveness. All these algorithms rely on arbitrary data (the pixels’ count-rate) normalization, making their performance strngly affected by dataset or user-specific data premanipulation. We developed a DNN algorithm capable to enhance images signal-to-noise surpassing previous algorithms. Our model stems from the nature of the photon detection process which is characterized by an inherently Poissonian statistics. Our algorithm is thus driven by distance between probability functions instead than relying on the sole count-rate, producing high performance results especially in high-dynamic-range images. Moreover, it does not require any arbitrary image renormalization other than the transformation of the camera’s count-rate into photon-number.
2023
Istituto di Nanotecnologia - NANOTEC - Sede Secondaria Roma
Photonics
File in questo prodotto:
File Dimensione Formato  
oe-31-26-43838.pdf

accesso aperto

Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 4.89 MB
Formato Adobe PDF
4.89 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/533585
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 11
  • ???jsp.display-item.citation.isi??? ND
social impact