Stimulated Raman scattering (SRS) microscopy is a high-speed imaging modality based on intrinsic molecular vibrations, producing chemical maps in living systems. Such capability, allowing for direct visualization without the perturbation of biological processes, has enabled a plethora of biological and medical applications. In this review, after introducing the basic theory and competitive effects of SRS, some crucial features for SRS microscopy implementations, such as noise, spectral bandwidth, speed, chemical sensitivity, spatial resolution, and quantum enhancement, are discussed. Finally, some SRS applications in biological and medical imaging are described. Even if certainly not exhaustive, we aimed to offer a broad overview, providing guidance for newcomers and hinting at a more detailed investigation to interested researchers in this rapidly growing field.

Stimulated Raman Scattering Microscopy: A Review

Ranjan R.;Sirleto L.
2024

Abstract

Stimulated Raman scattering (SRS) microscopy is a high-speed imaging modality based on intrinsic molecular vibrations, producing chemical maps in living systems. Such capability, allowing for direct visualization without the perturbation of biological processes, has enabled a plethora of biological and medical applications. In this review, after introducing the basic theory and competitive effects of SRS, some crucial features for SRS microscopy implementations, such as noise, spectral bandwidth, speed, chemical sensitivity, spatial resolution, and quantum enhancement, are discussed. Finally, some SRS applications in biological and medical imaging are described. Even if certainly not exhaustive, we aimed to offer a broad overview, providing guidance for newcomers and hinting at a more detailed investigation to interested researchers in this rapidly growing field.
2024
Istituto di Scienze Applicate e Sistemi Intelligenti "Eduardo Caianiello" - ISASI - Sede Secondaria Napoli
nonlinear optics
optical microscopy
Raman imaging
stimulated Raman scattering
ultrafast optics
File in questo prodotto:
File Dimensione Formato  
photonics-11-00489.pdf

accesso aperto

Licenza: Dominio pubblico
Dimensione 3.6 MB
Formato Adobe PDF
3.6 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/533652
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 0
social impact