Lithium wall conditioning has improved the performance of many magnetic fusion devices. Li conditioning in the RFX-mod device was performed by: (1) a single Li pellet injector and (2) a multi-Li pellet injector during He plasma discharges; (3) a Li evaporator after He glow discharge cleaning and He plasma discharge exposure. This report compares the spatial and depth distributions of Li deposited on polycrystalline graphite witness samples at different locations in RFX-mod and the elemental and chemical compositions of the resulting surfaces. The sample surfaces were analyzed ex situ using secondary ion mass spectrometry (SIMS) and high-resolution X-ray photoelectron spectroscopy (HR-XPS). The results showed that Li pellet injection provided a relatively uniform toroidal coverage while Li evaporation produced highly localized Li deposition. A Li 1s HR-XPS peak at 56.5 eV binding energy (BE) characteristic of lithium-intercalated graphite was only observed with the sample exposed to Li evaporation. All of the samples exhibited a HR-XPS C 1s peak at 285.1–285.2 eV BE that is largely attributed to hydrogenated graphite. This finding suggests that hydrogenation of fresh graphite occurs during He plasma discharge exposures. Our results have implications for density control and the selection of Li conditioning techniques in magnetic fusion devices.

SIMS and HR-XPS characterization of lithiated graphite from the magnetic fusion device RFX-mod

Barison, S.;Fiameni, S.;
2021

Abstract

Lithium wall conditioning has improved the performance of many magnetic fusion devices. Li conditioning in the RFX-mod device was performed by: (1) a single Li pellet injector and (2) a multi-Li pellet injector during He plasma discharges; (3) a Li evaporator after He glow discharge cleaning and He plasma discharge exposure. This report compares the spatial and depth distributions of Li deposited on polycrystalline graphite witness samples at different locations in RFX-mod and the elemental and chemical compositions of the resulting surfaces. The sample surfaces were analyzed ex situ using secondary ion mass spectrometry (SIMS) and high-resolution X-ray photoelectron spectroscopy (HR-XPS). The results showed that Li pellet injection provided a relatively uniform toroidal coverage while Li evaporation produced highly localized Li deposition. A Li 1s HR-XPS peak at 56.5 eV binding energy (BE) characteristic of lithium-intercalated graphite was only observed with the sample exposed to Li evaporation. All of the samples exhibited a HR-XPS C 1s peak at 285.1–285.2 eV BE that is largely attributed to hydrogenated graphite. This finding suggests that hydrogenation of fresh graphite occurs during He plasma discharge exposures. Our results have implications for density control and the selection of Li conditioning techniques in magnetic fusion devices.
2021
Istituto di Chimica della Materia Condensata e di Tecnologie per l'Energia - ICMATE
Graphite
Li conditioning
Lithium
Plasma facing components
SIMS
XPS
File in questo prodotto:
File Dimensione Formato  
Rais et al 2021.pdf

solo utenti autorizzati

Tipologia: Versione Editoriale (PDF)
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 4.88 MB
Formato Adobe PDF
4.88 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/533679
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 17
  • ???jsp.display-item.citation.isi??? 14
social impact