Smart tags are compact electronic devices affixed to or embedded into objects to facilitate identification, monitoring, and data exchange. Consequently, secure authentication of these tags is a crucial issue, as objects must reliably verify their identity before sharing sensitive information with other entities. The application of Physical Unclonable Functions (PUF) as a device's “digital fingerprint” has attracted significant attention, yet existing PUF-based authentication methods exhibit security vulnerabilities, either due to the authentication protocol itself or the limited reliability of the PUF technology used. Moreover, there has been a considerable focus on the software aspect, often overlooking the critical role of hardware design, which can become a target for attacks aimed at compromising the device's identity or act as a hindrance in the manufacturing process. In light of these points, this paper introduces an identification tag architecture that leverages PUF technology, focusing on authentication. This architecture features a straightforward but efficient authentication protocol, underpinned by a new and highly stable PUF model. The overall architecture encompasses particular hardware implementation aspects that significantly simplify the tag's enrollment phase and minimize vulnerabilities to attacks. The paper also describes a prototype of this identification tag and provide detailed insights into its application.

PUF-Based Authentication-Oriented Architecture for Identification Tags

Rullo A.;
2024

Abstract

Smart tags are compact electronic devices affixed to or embedded into objects to facilitate identification, monitoring, and data exchange. Consequently, secure authentication of these tags is a crucial issue, as objects must reliably verify their identity before sharing sensitive information with other entities. The application of Physical Unclonable Functions (PUF) as a device's “digital fingerprint” has attracted significant attention, yet existing PUF-based authentication methods exhibit security vulnerabilities, either due to the authentication protocol itself or the limited reliability of the PUF technology used. Moreover, there has been a considerable focus on the software aspect, often overlooking the critical role of hardware design, which can become a target for attacks aimed at compromising the device's identity or act as a hindrance in the manufacturing process. In light of these points, this paper introduces an identification tag architecture that leverages PUF technology, focusing on authentication. This architecture features a straightforward but efficient authentication protocol, underpinned by a new and highly stable PUF model. The overall architecture encompasses particular hardware implementation aspects that significantly simplify the tag's enrollment phase and minimize vulnerabilities to attacks. The paper also describes a prototype of this identification tag and provide detailed insights into its application.
2024
Istituto di Calcolo e Reti ad Alte Prestazioni - ICAR
Protocols
Smart Tag
Authentication
Device Architecture
ECDSA
Elliptic Curve Cryptography
Hardware Design
Identification
Internet of Things
Object recognition
Physical Unclonable Function
File in questo prodotto:
File Dimensione Formato  
PUF-Based_Authentication-Oriented_Architecture_for_Identification_Tags.pdf

accesso aperto

Licenza: Creative commons
Dimensione 3.75 MB
Formato Adobe PDF
3.75 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/533710
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? ND
social impact