Scalable photonic quantum computing architectures pose stringent requirements on photonic processing devices. The needs for low-loss high-speed reconfigurable circuits and near-deterministic resource state generators are some of the most challenging requirements. Here, we develop an integrated photonic platform based on thin-film lithium niobate and interface it with deterministic solid-state single-photon sources based on quantum dots in nanophotonic waveguides. The generated photons are processed with low-loss circuits programmable at speeds of several gigahertz.We realize a variety of key photonic quantum information processing functionalities with the high-speed circuits, including on-chip quantum interference, photon demultiplexing, and reprogrammability of a four-mode universal photonic circuit. These results show a promising path forward for scalable photonic quantum technologies by merging integrated photonics with solid-state deterministic photon sources in a heterogeneous approach to scaling up.

High-speed thin-film lithium niobate quantum processor driven by a solid-state quantum emitter

Lenzini, Francesco
2023

Abstract

Scalable photonic quantum computing architectures pose stringent requirements on photonic processing devices. The needs for low-loss high-speed reconfigurable circuits and near-deterministic resource state generators are some of the most challenging requirements. Here, we develop an integrated photonic platform based on thin-film lithium niobate and interface it with deterministic solid-state single-photon sources based on quantum dots in nanophotonic waveguides. The generated photons are processed with low-loss circuits programmable at speeds of several gigahertz.We realize a variety of key photonic quantum information processing functionalities with the high-speed circuits, including on-chip quantum interference, photon demultiplexing, and reprogrammability of a four-mode universal photonic circuit. These results show a promising path forward for scalable photonic quantum technologies by merging integrated photonics with solid-state deterministic photon sources in a heterogeneous approach to scaling up.
2023
Istituto di fotonica e nanotecnologie - IFN - Sede Milano
Integrated quantum photonics, Quantum optics, Thin-film lithium niobate, Quantum dot single-photon sources
File in questo prodotto:
File Dimensione Formato  
sciadv.adg7268 (4).pdf

accesso aperto

Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 709.6 kB
Formato Adobe PDF
709.6 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/533830
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 46
  • ???jsp.display-item.citation.isi??? 42
social impact