Sepsis is a life-threatening condition with complex and dynamic progression, often requiring timely and personalized treatment strategies. In this paper, we propose a multivariate longitudinal clustering, an advanced data analysis technique, as a powerful approach to understanding the diverse trajectories of sepsis by grouping patients based on multiple clinical variables measured over time. Dynamic Time Warping (DTW) is integrated into the longitudinal clustering as a distance measure to identify subgroups of patients with similar temporal patterns in multivariate data. By leveraging sepsis-related electronic health records (EHRs), which provide rich time-series data on laboratory results along with patient demographics and underlying health conditions, the proposed method reveals distinct sepsis phenotypes that reflect variations in disease progression. Our results confirm the critical role of the Thrombin-Antigen complex and the International Normalized Ratio as predictors of poor outcomes for septic patients. Despite challenges like missing data and interpretability, multivariate longitudinal clustering in sepsis offers significant potential to enhance clinical decision-making and improve patient outcomes

Analyzing trajectories of clinical markers in patients with sepsis through multivariate longitudinal clustering

Ribino P.;Mannone M.;Di Napoli C.;Paragliola G.;
2024

Abstract

Sepsis is a life-threatening condition with complex and dynamic progression, often requiring timely and personalized treatment strategies. In this paper, we propose a multivariate longitudinal clustering, an advanced data analysis technique, as a powerful approach to understanding the diverse trajectories of sepsis by grouping patients based on multiple clinical variables measured over time. Dynamic Time Warping (DTW) is integrated into the longitudinal clustering as a distance measure to identify subgroups of patients with similar temporal patterns in multivariate data. By leveraging sepsis-related electronic health records (EHRs), which provide rich time-series data on laboratory results along with patient demographics and underlying health conditions, the proposed method reveals distinct sepsis phenotypes that reflect variations in disease progression. Our results confirm the critical role of the Thrombin-Antigen complex and the International Normalized Ratio as predictors of poor outcomes for septic patients. Despite challenges like missing data and interpretability, multivariate longitudinal clustering in sepsis offers significant potential to enhance clinical decision-making and improve patient outcomes
2024
Istituto di Calcolo e Reti ad Alte Prestazioni - ICAR - Sede Secondaria Napoli
clustering, unsupervised machine learning, electronic health records, longitudinal clustering, patient trajectories, sepsis, intensive care unit
File in questo prodotto:
File Dimensione Formato  
paper22.pdf

non disponibili

Tipologia: Documento in Post-print
Licenza: Altro tipo di licenza
Dimensione 373.06 kB
Formato Adobe PDF
373.06 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/533845
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact