Scope: Type 2 diabetes and nonalcoholic fatty liver diseases (NAFLDs) are promoted by insulin resistance (IR), which alters lipid homeostasis in the liver. This study aims to investigate the effect of N-methylpyridinium (NMP), a bioactive alkaloid of coffee brew, on lipid metabolism in hepatocytes. Methods and results: The effect of NMP in modulating lipid metabolism is evaluated at physiological concentrations in a diabetes cell model represented by HepG2 cells cultured in a high-glucose medium. Hyperglycemia triggers lipid droplet accumulation in cells and enhances the lipogenic gene expression, which is transactivated by sterol regulatory element binding protein-1 (SREBP-1). Lipid droplet accumulation alters the redox status and endoplasmic reticulum (ER) stress, leading to the activation of the unfolded protein response and antioxidative pathways by X-Box Binding Protein 1(XBP-1)/eukaryotic Initiation Factor 2 alpha (eIF2α) Protein Kinase RNA-Like ER Kinase and nuclear factor erythroid 2-related factor 2 (NRF2), respectively. NMP induces the phosphorylation of AMP-dependent protein kinase (AMPK) and acetyl-CoA carboxylase α (ACACA), and improves the redox status and ER homeostasis, essential steps to reduce lipogenesis and lipid droplet accumulation. Conclusion: These results suggest that NMP may be beneficial for the management of T2D and NAFLD by ameliorating the cell oxidative and ER homeostasis and lipid metabolism.

Coffee Bioactive N-Methylpyridinium: Unveiling Its Antilipogenic Effects by Targeting De Novo Lipogenesis in Human Hepatocytes

Giannotti L.;Di Chiara Stanca B.;Massaro M.;Quarta S.;Del Rio D.;
2024

Abstract

Scope: Type 2 diabetes and nonalcoholic fatty liver diseases (NAFLDs) are promoted by insulin resistance (IR), which alters lipid homeostasis in the liver. This study aims to investigate the effect of N-methylpyridinium (NMP), a bioactive alkaloid of coffee brew, on lipid metabolism in hepatocytes. Methods and results: The effect of NMP in modulating lipid metabolism is evaluated at physiological concentrations in a diabetes cell model represented by HepG2 cells cultured in a high-glucose medium. Hyperglycemia triggers lipid droplet accumulation in cells and enhances the lipogenic gene expression, which is transactivated by sterol regulatory element binding protein-1 (SREBP-1). Lipid droplet accumulation alters the redox status and endoplasmic reticulum (ER) stress, leading to the activation of the unfolded protein response and antioxidative pathways by X-Box Binding Protein 1(XBP-1)/eukaryotic Initiation Factor 2 alpha (eIF2α) Protein Kinase RNA-Like ER Kinase and nuclear factor erythroid 2-related factor 2 (NRF2), respectively. NMP induces the phosphorylation of AMP-dependent protein kinase (AMPK) and acetyl-CoA carboxylase α (ACACA), and improves the redox status and ER homeostasis, essential steps to reduce lipogenesis and lipid droplet accumulation. Conclusion: These results suggest that NMP may be beneficial for the management of T2D and NAFLD by ameliorating the cell oxidative and ER homeostasis and lipid metabolism.
2024
Istituto per i Polimeri, Compositi e Biomateriali - IPCB
coffee
de novo lipogenesis
endoplasmic reticulum stress
fatty liver
oxidative stress
plant bioactive compounds
pyridine alkaloid
SREBP-1
type 2 diabetes
File in questo prodotto:
File Dimensione Formato  
Molecular Nutrition Food Res - 2024 - Giannotti - Coffee Bioactive N‐Methylpyridinium Unveiling Its Antilipogenic Effects.pdf

accesso aperto

Licenza: Dominio pubblico
Dimensione 1.64 MB
Formato Adobe PDF
1.64 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/533905
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 6
  • ???jsp.display-item.citation.isi??? 6
social impact