A lack of sustainability in the design of electronic components contributes to the current challenges of electronic waste and material sourcing. Common materials for electronics are prone to environmental, economic, and ethical problems in their sourcing, and at the end of their life often contribute to toxic and nonrecyclable waste. This study investigates the inkjet printing of flexible humidity sensors and includes biosourced and biodegradable materials to improve the sustainability of the process. Humidity sensors are useful tools for monitoring atmospheric conditions in various fields. Here, an aqueous dispersion of black soldier fly melanin was optimized for printing with a cosolvent and deposited onto interdigitated silver electrodes on flexible substrates. Impedance spectroscopy demonstrated that adding choline chloride increased the ion concentration and AC conductivity by more than 3 orders of magnitude, resulting in a significant improvement in sensing performance and reduced hysteresis. The devices exhibit fast detection (0.8 ± 0.5 s) and recovery times (0.8 ± 0.3 s), with a 170 ± 40-fold decrease in impedance for relative humidity changes from 30% to 90%. This factor is lowered upon prolonged exposure to high humidity in tests over 72 h during which a stable operation is reached. The low embodied energy of the sensor, achieved through material-efficient deposition and the use of waste management byproducts, enhances its sustainability. In addition, approaches for reusability and degradability are presented, rendering the sensor suitable for wearable or agricultural applications.

Inkjet-Printed Bio-Based Melanin Composite Humidity Sensor for Sustainable Electronics

Ambrico, Marianna
Conceptualization
;
2024

Abstract

A lack of sustainability in the design of electronic components contributes to the current challenges of electronic waste and material sourcing. Common materials for electronics are prone to environmental, economic, and ethical problems in their sourcing, and at the end of their life often contribute to toxic and nonrecyclable waste. This study investigates the inkjet printing of flexible humidity sensors and includes biosourced and biodegradable materials to improve the sustainability of the process. Humidity sensors are useful tools for monitoring atmospheric conditions in various fields. Here, an aqueous dispersion of black soldier fly melanin was optimized for printing with a cosolvent and deposited onto interdigitated silver electrodes on flexible substrates. Impedance spectroscopy demonstrated that adding choline chloride increased the ion concentration and AC conductivity by more than 3 orders of magnitude, resulting in a significant improvement in sensing performance and reduced hysteresis. The devices exhibit fast detection (0.8 ± 0.5 s) and recovery times (0.8 ± 0.3 s), with a 170 ± 40-fold decrease in impedance for relative humidity changes from 30% to 90%. This factor is lowered upon prolonged exposure to high humidity in tests over 72 h during which a stable operation is reached. The low embodied energy of the sensor, achieved through material-efficient deposition and the use of waste management byproducts, enhances its sustainability. In addition, approaches for reusability and degradability are presented, rendering the sensor suitable for wearable or agricultural applications.
2024
Istituto per la Scienza e Tecnologia dei Plasmi - ISTP - Sede Secondaria Bari
humidity sensing
inkjet printing
melanin
recycling
sustainable electronics
File in questo prodotto:
File Dimensione Formato  
krebsbach-et-al-2024-inkjet-printed-bio-based-melanin-composite-humidity-sensor-for-sustainable-electronics.pdf

solo utenti autorizzati

Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 5.54 MB
Formato Adobe PDF
5.54 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/534218
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 11
  • ???jsp.display-item.citation.isi??? 10
social impact