The Italian Po Valley is one of the most polluted regions in Europe. During winter, meteorological conditions favor long and dense fogs, which strongly affect visibility and human health. In spring, the frequency of nighttime fogs reduces while daytime new particle formation events become more common. This transition is likely caused by a reduction in particulate matter (PM2.5), leading to a decrease in the relevant condensation sink. The physics and chemistry of fog and aerosol have been studied at the San Pietro Capofiume site since the 1980s, but the detailed processes driving the observed trends are not fully understood. Hence, during winter and spring 2021/22, the Fog and Aerosol Interaction Research Italy (FAIRARI) campaign was carried out, using a wide spectrum of approaches, including in situ measurements, outdoor chamber experiments, and remote sensing. Atmospheric constituents and their properties were measured ranging from gas molecules and molecular clusters to fog droplets. One unique aspect of this study is the direct measurement of the aerosol composition inside and outside of fog, showing a slightly greater dominance of organic compounds in the interstitial compared to the droplet phase. Satellite observations of fog provided a spatial context and agreed well with in situ measurements of droplet size. They were complemented with in situ chamber experiments, providing insights into oxidative processes and revealing a large secondary organic aerosol-forming potential of ambient air upon chemical aging. The oxidative potential of aerosol and fog water inferred the impact of aerosol-fog interactions on particle toxicity.

From Molecules to Droplets: The Fog and Aerosol Interaction Research Italy (FAIRARI) 2021/22 Campaign

Decesari, Stefano
Secondo
;
Bianchi, Federico;Busetto, Maurizio;Fuzzi, Sandro;Lupi, Angelo;Marinoni, Angela;Paglione, Marco;Rinaldi, Matteo;
2025

Abstract

The Italian Po Valley is one of the most polluted regions in Europe. During winter, meteorological conditions favor long and dense fogs, which strongly affect visibility and human health. In spring, the frequency of nighttime fogs reduces while daytime new particle formation events become more common. This transition is likely caused by a reduction in particulate matter (PM2.5), leading to a decrease in the relevant condensation sink. The physics and chemistry of fog and aerosol have been studied at the San Pietro Capofiume site since the 1980s, but the detailed processes driving the observed trends are not fully understood. Hence, during winter and spring 2021/22, the Fog and Aerosol Interaction Research Italy (FAIRARI) campaign was carried out, using a wide spectrum of approaches, including in situ measurements, outdoor chamber experiments, and remote sensing. Atmospheric constituents and their properties were measured ranging from gas molecules and molecular clusters to fog droplets. One unique aspect of this study is the direct measurement of the aerosol composition inside and outside of fog, showing a slightly greater dominance of organic compounds in the interstitial compared to the droplet phase. Satellite observations of fog provided a spatial context and agreed well with in situ measurements of droplet size. They were complemented with in situ chamber experiments, providing insights into oxidative processes and revealing a large secondary organic aerosol-forming potential of ambient air upon chemical aging. The oxidative potential of aerosol and fog water inferred the impact of aerosol-fog interactions on particle toxicity.
2025
Istituto di Scienze dell'Atmosfera e del Clima - ISAC
Aerosol nucleation
Aerosol-cloud interaction
Air quality and health
Atmospheric composition
Fog
In situ atmospheric observations
File in questo prodotto:
File Dimensione Formato  
bams-BAMS-D-23-0166.1.pdf

embargo fino al 08/07/2025

Descrizione: This is the Version of Record of the article published in https://doi.org/10.1175/BAMS-D-23-0166.1 . ©2025 American Meteorological Society.
Tipologia: Versione Editoriale (PDF)
Licenza: Altro tipo di licenza
Dimensione 3.58 MB
Formato Adobe PDF
3.58 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/534246
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact