Integrating the carrier tunability of a functional two-dimensional material electronic device with a direct probe of energy-and momentum-resolved electronic excitations is essential to gain insights on how many-body interactions are influenced during device operation. Here, we use microfocused angle-resolved photoemission in order to analyze many-body interactions in back-gated graphene supported on hexagonal boron nitride. By extracting the doping-dependent quasiparticle dispersion and self-energy, we observe how these interactions renormalize the Dirac cone and impact the electron mobility of our device. Our results are not only limited to a finite energy range around the Fermi level, as in electron transport measurements, but describe interactions on a much wider energy scale, extending beyond the regime of hot carrier excitations.
Momentum-resolved view of highly tunable many-body effects in a graphene/hBN field-effect device
Curcio D.;
2020
Abstract
Integrating the carrier tunability of a functional two-dimensional material electronic device with a direct probe of energy-and momentum-resolved electronic excitations is essential to gain insights on how many-body interactions are influenced during device operation. Here, we use microfocused angle-resolved photoemission in order to analyze many-body interactions in back-gated graphene supported on hexagonal boron nitride. By extracting the doping-dependent quasiparticle dispersion and self-energy, we observe how these interactions renormalize the Dirac cone and impact the electron mobility of our device. Our results are not only limited to a finite energy range around the Fermi level, as in electron transport measurements, but describe interactions on a much wider energy scale, extending beyond the regime of hot carrier excitations.| File | Dimensione | Formato | |
|---|---|---|---|
|
10.1103@PhysRevB.101.201409.pdf
accesso aperto
Descrizione: This document is the Accepted Manuscript version of a Published Work that can be found in final form at https://doi.org/10.1103/PhysRevB.101.201409
Tipologia:
Documento in Post-print
Licenza:
Altro tipo di licenza
Dimensione
3.74 MB
Formato
Adobe PDF
|
3.74 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


