Attenzione: i dati modificati non sono ancora stati salvati. Per confermare inserimenti o cancellazioni di voci è necessario confermare con il tasto SALVA/INSERISCI in fondo alla pagina
CNR Institutional Research Information System
Although variation in effect sizes and predicted values among studies of similar phenomena is inevitable, such variation far exceeds what might be produced by sampling error alone. One possible explanation for variation among results is differences among researchers in the decisions they make regarding statistical analyses. A grow- ing array of studies has explored this analytical variability in different fields and has found substantial variability among results despite analysts having the same data and research question. Many of these studies have been in the social sciences, but one small “many analyst” study found similar variability in ecology. We expanded the scope of this prior work by implementing a large-scale empirical exploration of the variation in effect sizes and model pre- dictions generated by the analytical decisions of different researchers in ecology and evolutionary biology. We used two unpublished datasets, one from evolutionary ecology (blue tit, Cyanistes caeruleus, to compare sibling number and nestling growth) and one from conservation ecology (Eucalyptus, to compare grass cover and tree seedling recruitment). The project leaders recruited 174 analyst teams, comprising 246 analysts, to investigate the answers to prespecified research questions. Analyses conducted by these teams yielded 141 usable effects (compatible with our meta-analyses and with all necessary information provided) for the blue tit dataset, and 85 usable effects for the Eucalyptus dataset. We found substantial heterogeneity among results for both datasets, although the pat- terns of variation differed between them. For the blue tit analyses, the average effect was convincingly negative, with less growth for nestlings living with more siblings, but there was near continuous variation in effect size from large negative effects to effects near zero, and even effects crossing the traditional threshold of statistical sig- nificance in the opposite direction. In contrast, the average relationship between grass cover and Eucalyptus seedling number was only slightly negative and not convincingly different from zero, and most effects ranged from weakly negative to weakly positive, with about a third of effects crossing the traditional threshold of significance in one direc- tion or the other. However, there were also several striking outliers in the Eucalyptus dataset, with effects far from zero. For both datasets, we found substantial variation in the variable selection and random effects structures among analy- ses, as well as in the ratings of the analytical methods by peer reviewers, but we found no strong relationship between any of these and deviation from the meta-analytic mean. In other words, analyses with results that were far from the mean were no more or less likely to have dissimilar variable sets, use random effects in their models, or receive poor peer reviews than those analyses that found results that were close to the mean. The existence of substantial variability among analysis outcomes raises important questions about how ecologists and evolutionary biologists should interpret published results, and how they should conduct analyses in the future.
Same data, different analysts: variation in effect sizes due to analytical decisions in ecology and evolutionary biology
Gould, Elliot;Fraser, Hannah S.;Parker, Timothy H.;Nakagawa, Shinichi;Griffith, Simon C.;Vesk, Peter A.;Fidler, Fiona;Hamilton, Daniel G.;Abbey-Lee, Robin N.;Abbott, Jessica K.;Aguirre, Luis A.;Alcaraz, Carles;Aloni, Irith;Altschul, Drew;Arekar, Kunal;Atkins, Jeff W.;Atkinson, Joe;Baker, Christopher M.;Barrett, Meghan;Bell, Kristian;Bello, Suleiman Kehinde;Beltrán, Iván;Berauer, Bernd J.;Bertram, Michael Grant;Billman, Peter D.;Blake, Charlie K.;Blake, Shannon;Bliard, Louis;Bonisoli-Alquati, Andrea;Bonnet, Timothée;Bordes, Camille Nina Marion;Bose, Aneesh P. H.;Botterill-James, Thomas;Boyd, Melissa Anna;Boyle, Sarah A.;Bradfer-Lawrence, Tom;Bradham, Jennifer;Brand, Jack A.;Brengdahl, Martin I.;Bulla, Martin;Bussière, Luc;Camerlenghi, Ettore;Campbell, Sara E.;Campos, Leonardo L. F.;Caravaggi, Anthony;Cardoso, Pedro;Carroll, Charles J. W.;Catanach, Therese A.;Chen, Xuan;Chik, Heung Ying Janet;Choy, Emily Sarah;Christie, Alec Philip;Chuang, Angela;Chunco, Amanda J.;Clark, Bethany L.;Contina, Andrea;Covernton, Garth A.;Cox, Murray P.;Cressman, Kimberly A.;Crotti, Marco;Crouch, Connor Davidson;D'Amelio, Pietro B.;de Sousa, Alexandra Allison;Döbert, Timm Fabian;Dobler, Ralph;Dobson, Adam J.;Doherty, Tim S.;Drobniak, Szymon Marian;Duffy, Alexandra Grace;Duncan, Alison B.;Dunn, Robert P.;Dunning, Jamie;Dutta, Trishna;Eberhart-Hertel, Luke;Elmore, Jared Alan;Elsherif, Mahmoud Medhat;English, Holly M.;Ensminger, David C.;Ernst, Ulrich Rainer;Ferguson, Stephen M.;Fernandez-Juricic, Esteban;Ferreira-Arruda, Thalita;Fieberg, John;Finch, Elizabeth A.;Fiorenza, Evan A.;Fisher, David N.;Fontaine, Amélie;Forstmeier, Wolfgang;Fourcade, Yoan;Frank, Graham S.;Freund, Cathryn A.;Fuentes-Lillo, Eduardo;Gandy, Sara L.;Gannon, Dustin G.;García-Cervigón, Ana I.;Garretson, Alexis C.;Ge, Xuezhen;Geary, William L.;Géron, Charly;Gilles, Marc;Girndt, Antje;Gliksman, Daniel;Goldspiel, Harrison B.;Gomes, Dylan G. E.;Good, Megan Kate;Goslee, Sarah C.;Gosnell, J. Stephen;Grames, Eliza M.;Gratton, Paolo;Grebe, Nicholas M.;Greenler, Skye M.;Griffioen, Maaike;Griffith, Daniel M.;Griffith, Frances J.;Grossman, Jake J.;Güncan, Ali;Haesen, Stef;Hagan, James G.;Hager, Heather A.;Harris, Jonathan Philo;Harrison, Natasha Dean;Hasnain, Sarah Syedia;Havird, Justin Chase;Heaton, Andrew J.;Herrera-Chaustre, María Laura;Howard, Tanner J.;Hsu, Bin-Yan;Iannarilli, Fabiola;Iranzo, Esperanza C.;Iverson, Erik N. K.;Jimoh, Saheed Olaide;Johnson, Douglas H.;Johnsson, Martin;Jorna, Jesse;Jucker, Tommaso;Jung, Martin;Kačergytė, Ineta;Kaltz, Oliver;Ke, Alison;Kelly, Clint D.;Keogan, Katharine;Keppeler, Friedrich Wolfgang;Killion, Alexander K.;Kim, Dongmin;Kochan, David P.;Korsten, Peter;Kothari, Shan;Kuppler, Jonas;Kusch, Jillian M.;Lagisz, Malgorzata;Lalla, Kristen Marianne;Larkin, Daniel J.;Larson, Courtney L.;Lauck, Katherine S.;Lauterbur, M. Elise;Law, Alan;Léandri-Breton, Don-Jean;Lembrechts, Jonas J.;L'Herpiniere, Kiara;Lievens, Eva J. P.;de Lima, Daniela Oliveira;Lindsay, Shane;Luquet, Martin;MacLeod, Ross;Macphie, Kirsty H.;Magellan, Kit;Mair, Magdalena M.;Malm, Lisa E.;Mammola, Stefano;Mandeville, Caitlin P.;Manhart, Michael;Manrique-Garzon, Laura Milena;Mäntylä, Elina;Marchand, Philippe;Marshall, Benjamin Michael;Martin, Charles A.;Martin, Dominic Andreas;Martin, Jake Mitchell;Martinig, April Robin;McCallum, Erin S.;McCauley, Mark;McNew, Sabrina M.;Meiners, Scott J.;Merkling, Thomas;Michelangeli, Marcus;Moiron, Maria;Moreira, Bruno;Mortensen, Jennifer;Mos, Benjamin;Muraina, Taofeek Olatunbosun;Murphy, Penelope Wrenn;Nelli, Luca;Niemelä, Petri;Nightingale, Josh;Nilsonne, Gustav;Nolazco, Sergio;Nooten, Sabine S.;Novotny, Jessie Lanterman;Olin, Agnes Birgitta;Organ, Chris L.;Ostevik, Kate L.;Palacio, Facundo Xavier;Paquet, Matthieu;Parker, Darren James;Pascall, David J.;Pasquarella, Valerie J.;Paterson, John Harold;Payo-Payo, Ana;Pedersen, Karen Marie;Perez, Grégoire;Perry, Kayla I.;Pottier, Patrice;Proulx, Michael J.;Proulx, Raphaël;Pruett, Jessica L;Ramananjato, Veronarindra;Randimbiarison, Finaritra Tolotra;Razafindratsima, Onja H.;Rennison, Diana J.;Riva, Federico;Riyahi, Sepand;Roast, Michael James;Rocha, Felipe Pereira;Roche, Dominique G.;Román-Palacios, Cristian;Rosenberg, Michael S.;Ross, Jessica;Rowland, Freya E.;Rugemalila, Deusdedith;Russell, Avery L.;Ruuskanen, Suvi;Saccone, Patrick;Sadeh, Asaf;Salazar, Stephen M.;Sales, Kris;Salmón, Pablo;Sánchez-Tójar, Alfredo;Santos, Leticia Pereira;Santostefano, Francesca;Schilling, Hayden T.;Schmidt, Marcus;Schmoll, Tim;Schneider, Adam C.;Schrock, Allie E.;Schroeder, Julia;Schtickzelle, Nicolas;Schultz, Nick L.;Scott, Drew A.;Scroggie, Michael Peter;Shapiro, Julie Teresa;Sharma, Nitika;Shearer, Caroline L.;Simón, Diego;Sitvarin, Michael I.;Skupien, Fabrício Luiz;Slinn, Heather Lea;Smith, Grania Polly;Smith, Jeremy A.;Sollmann, Rahel;Whitney, Kaitlin Stack;Still, Shannon Michael;Stuber, Erica F.;Sutton, Guy F.;Swallow, Ben;Taff, Conor Claverie;Takola, Elina;Tanentzap, Andrew J.;Tarjuelo, Rocío;Telford, Richard J.;Thawley, Christopher J.;Thierry, Hugo;Thomson, Jacqueline;Tidau, Svenja;Tompkins, Emily M.;Tortorelli, Claire Marie;Trlica, Andrew;Turnell, Biz R.;Urban, Lara;Van de Vondel, Stijn;van der Wal, Jessica Eva Megan;Van Eeckhoven, Jens;van Oordt, Francis;Vanderwel, K. Michelle;Vanderwel, Mark C.;Vanderwolf, Karen J.;Vélez, Juliana;Vergara-Florez, Diana Carolina;Verrelli, Brian C.;Vieira, Marcus Vinícius;Villamil, Nora;Vitali, Valerio;Vollering, Julien;Walker, Jeffrey;Walker, Xanthe J.;Walter, Jonathan A.;Waryszak, Pawel;Weaver, Ryan J.;Wedegärtner, Ronja E. M.;Weller, Daniel L.;Whelan, Shannon;White, Rachel Louise;Wolfson, David William;Wood, Andrew;Yanco, Scott W.;Yen, Jian D. L.;Youngflesh, Casey;Zilio, Giacomo;Zimmer, Cédric;Zimmerman, Gregory Mark;Zitomer, Rachel A.
2025
Abstract
Although variation in effect sizes and predicted values among studies of similar phenomena is inevitable, such variation far exceeds what might be produced by sampling error alone. One possible explanation for variation among results is differences among researchers in the decisions they make regarding statistical analyses. A grow- ing array of studies has explored this analytical variability in different fields and has found substantial variability among results despite analysts having the same data and research question. Many of these studies have been in the social sciences, but one small “many analyst” study found similar variability in ecology. We expanded the scope of this prior work by implementing a large-scale empirical exploration of the variation in effect sizes and model pre- dictions generated by the analytical decisions of different researchers in ecology and evolutionary biology. We used two unpublished datasets, one from evolutionary ecology (blue tit, Cyanistes caeruleus, to compare sibling number and nestling growth) and one from conservation ecology (Eucalyptus, to compare grass cover and tree seedling recruitment). The project leaders recruited 174 analyst teams, comprising 246 analysts, to investigate the answers to prespecified research questions. Analyses conducted by these teams yielded 141 usable effects (compatible with our meta-analyses and with all necessary information provided) for the blue tit dataset, and 85 usable effects for the Eucalyptus dataset. We found substantial heterogeneity among results for both datasets, although the pat- terns of variation differed between them. For the blue tit analyses, the average effect was convincingly negative, with less growth for nestlings living with more siblings, but there was near continuous variation in effect size from large negative effects to effects near zero, and even effects crossing the traditional threshold of statistical sig- nificance in the opposite direction. In contrast, the average relationship between grass cover and Eucalyptus seedling number was only slightly negative and not convincingly different from zero, and most effects ranged from weakly negative to weakly positive, with about a third of effects crossing the traditional threshold of significance in one direc- tion or the other. However, there were also several striking outliers in the Eucalyptus dataset, with effects far from zero. For both datasets, we found substantial variation in the variable selection and random effects structures among analy- ses, as well as in the ratings of the analytical methods by peer reviewers, but we found no strong relationship between any of these and deviation from the meta-analytic mean. In other words, analyses with results that were far from the mean were no more or less likely to have dissimilar variable sets, use random effects in their models, or receive poor peer reviews than those analyses that found results that were close to the mean. The existence of substantial variability among analysis outcomes raises important questions about how ecologists and evolutionary biologists should interpret published results, and how they should conduct analyses in the future.
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/534468
Citazioni
ND
ND
ND
social impact
Conferma cancellazione
Sei sicuro che questo prodotto debba essere cancellato?
simulazione ASN
Il report seguente simula gli indicatori relativi alla propria produzione scientifica in relazione alle soglie ASN 2023-2025 del proprio SC/SSD. Si ricorda che il superamento dei valori soglia (almeno 2 su 3) è requisito necessario ma non sufficiente al conseguimento dell'abilitazione. La simulazione si basa sui dati IRIS e sugli indicatori bibliometrici alla data indicata e non tiene conto di eventuali periodi di congedo obbligatorio, che in sede di domanda ASN danno diritto a incrementi percentuali dei valori. La simulazione può differire dall'esito di un’eventuale domanda ASN sia per errori di catalogazione e/o dati mancanti in IRIS, sia per la variabilità dei dati bibliometrici nel tempo. Si consideri che Anvur calcola i valori degli indicatori all'ultima data utile per la presentazione delle domande.
La presente simulazione è stata realizzata sulla base delle specifiche raccolte sul tavolo ER del Focus Group IRIS coordinato dall'Università di Modena e Reggio Emilia e delle regole riportate nel DM 589/2018 e allegata Tabella A. Cineca, l'Università di Modena e Reggio Emilia e il Focus Group IRIS non si assumono alcuna responsabilità in merito all’uso che il diretto interessato o terzi faranno della simulazione. Si specifica inoltre che la simulazione contiene calcoli effettuati con dati e algoritmi di pubblico dominio e deve quindi essere considerata come un mero ausilio al calcolo svolgibile manualmente o con strumenti equivalenti.