We propose a protocol to excite the Goldstone modes of a supersolid dipolar Bose-Einstein condensed gas confined in a ring geometry. By abruptly removing an applied periodic modulation proportional to cos(φ), where φ is the azimuthal angle, we explore the resulting oscillations of the gas by solving the extended Gross-Pitaevskii equation. The value of the two longitudinal sound velocities exhibited in the supersolid phase are analyzed using the hydrodynamic theory of supersolids at zero temperature, which explicitly takes into account both the superfluid and the crystal nature of the system. This approach allows for the determination of the layer compressibility modulus as well as of the superfluid fraction, fS, in agreement with the Leggett estimate of the nonclassical moment of inertia.

Sound, Superfluidity, and Layer Compressibility in a Ring Dipolar Supersolid

Recati, Alessio
;
Stringari, Sandro
2024

Abstract

We propose a protocol to excite the Goldstone modes of a supersolid dipolar Bose-Einstein condensed gas confined in a ring geometry. By abruptly removing an applied periodic modulation proportional to cos(φ), where φ is the azimuthal angle, we explore the resulting oscillations of the gas by solving the extended Gross-Pitaevskii equation. The value of the two longitudinal sound velocities exhibited in the supersolid phase are analyzed using the hydrodynamic theory of supersolids at zero temperature, which explicitly takes into account both the superfluid and the crystal nature of the system. This approach allows for the determination of the layer compressibility modulus as well as of the superfluid fraction, fS, in agreement with the Leggett estimate of the nonclassical moment of inertia.
2024
Istituto Nazionale di Ottica - INO - Sede Secondaria di Trento
Supersolidity, Hydrodynamics, Dipolar gases
File in questo prodotto:
File Dimensione Formato  
sound-supersolid-PhysRevLett.132.146001.pdf

solo utenti autorizzati

Tipologia: Versione Editoriale (PDF)
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 719.78 kB
Formato Adobe PDF
719.78 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/534973
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 8
  • ???jsp.display-item.citation.isi??? 7
social impact