This study evaluates the potential impact of the Copernicus Imaging Microwave Radiometer (CIMR) mission on the sea surface temperature (SST) products of the Mediterranean Sea. Currently, infrared (IR) radiometers provide accurate, high-resolution SST measurements, but they are limited by their inability to see through clouds. Passive microwave (PMW) radiometers, on the other hand, offer monitoring capabilities in almost all weather conditions but typically at lower spatial resolutions. The CIMR mission represents a notable advance in microwave remote sensing of SSTs, as it will ensure a ≤15 km spatial resolution in the recovered SST field. Using an observing system simulation experiment (OSSE), this study evaluates the effect of inserting synthetic CIMR observations into the Copernicus Mediterranean SST analysis system, which is based on an optimal interpolation (OI) algorithm. The OSSE was conducted using data for the year 2017, including daily SST and salinity outputs from a Mediterranean Sea model, hourly precipitation rates from the IMERG, and wind and cloud cover data from ERA5. The results suggest that the improved spatial resolution and accuracy of the CIMR could potentially improve SST retrievals in the Mediterranean Sea, offering better insights for climate and environmental monitoring in semi-closed basins. Including CIMR data in the OI algorithm reduced the mean error and root mean square error (RMSE) of the SST analysis, especially under conditions of low IR coverage. The greatest improvements were found to occur in July, corresponding to coastal upwelling and Atlantic inflow into the Alboran Sea. Improvements ranged from 16% to 29%, with an overall improvement of 26% for the full year of 2017. In conclusion, this preliminary study indicates that Copernicus Mediterranean Sea HR SST products could benefit from the inclusion of the CIMR in the current IR sensor constellation.

Preliminary Assessment of the Impact of the Copernicus Imaging Microwave Radiometer (CIMR) on the Copernicus Mediterranean Sea Surface Temperature L4 Analyses

Sabatini, Mattia
Primo
;
Pisano, Andrea
Secondo
;
Fanelli, Claudia;Buongiorno Nardelli, Bruno;Liberti, Gian Luigi;Santoleri, Rosalia;Ciani, Daniele
Ultimo
2025

Abstract

This study evaluates the potential impact of the Copernicus Imaging Microwave Radiometer (CIMR) mission on the sea surface temperature (SST) products of the Mediterranean Sea. Currently, infrared (IR) radiometers provide accurate, high-resolution SST measurements, but they are limited by their inability to see through clouds. Passive microwave (PMW) radiometers, on the other hand, offer monitoring capabilities in almost all weather conditions but typically at lower spatial resolutions. The CIMR mission represents a notable advance in microwave remote sensing of SSTs, as it will ensure a ≤15 km spatial resolution in the recovered SST field. Using an observing system simulation experiment (OSSE), this study evaluates the effect of inserting synthetic CIMR observations into the Copernicus Mediterranean SST analysis system, which is based on an optimal interpolation (OI) algorithm. The OSSE was conducted using data for the year 2017, including daily SST and salinity outputs from a Mediterranean Sea model, hourly precipitation rates from the IMERG, and wind and cloud cover data from ERA5. The results suggest that the improved spatial resolution and accuracy of the CIMR could potentially improve SST retrievals in the Mediterranean Sea, offering better insights for climate and environmental monitoring in semi-closed basins. Including CIMR data in the OI algorithm reduced the mean error and root mean square error (RMSE) of the SST analysis, especially under conditions of low IR coverage. The greatest improvements were found to occur in July, corresponding to coastal upwelling and Atlantic inflow into the Alboran Sea. Improvements ranged from 16% to 29%, with an overall improvement of 26% for the full year of 2017. In conclusion, this preliminary study indicates that Copernicus Mediterranean Sea HR SST products could benefit from the inclusion of the CIMR in the current IR sensor constellation.
2025
Istituto di Scienze Marine - ISMAR - Sede Secondaria Roma
Istituto di Scienze Marine - ISMAR - Sede Secondaria Napoli
sea surface temperature; microwave remote sensing; CIMR; Mediterranean Sea
File in questo prodotto:
File Dimensione Formato  
remotesensing-17-00462.pdf

accesso aperto

Descrizione: PDF pubblicato online
Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 5.51 MB
Formato Adobe PDF
5.51 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/535192
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact