Raman spectroscopy (RS), for its robust analytical capabilities under constant development, is a powerful method for the identification of various materials, in particular pigments in cultural heritage. Characterization of the artist’s palette is of fundamental importance for the correct formulation of restoration intervention as well as for preventive conservation of artworks. Here we examine the number and variability of research studies exploiting Bravo handheld Raman spectrophotometer relying on the excitation of Raman signal with temperature-shifted diode lasers emitting at 852 and 785 nm. To this end, we explore the spectral features of common historical pigments examined as powders and in the paint layer. We show that some materials may exhibit slightly different spectra as concerns especially the relative intensity of Raman lines with 852 nm laser excitation wavelength as compared to the standard 785 nm. The aim is to provide the research community with a reference spectral database that facilitates the identification of unknown pigments using the 852 nm excitation source.

Historical Pigments and Paint Layers: Raman Spectral Library with 852 nm Excitation Laser

Innocenti S.;Quintero Balbas D.;Striova J.
2024

Abstract

Raman spectroscopy (RS), for its robust analytical capabilities under constant development, is a powerful method for the identification of various materials, in particular pigments in cultural heritage. Characterization of the artist’s palette is of fundamental importance for the correct formulation of restoration intervention as well as for preventive conservation of artworks. Here we examine the number and variability of research studies exploiting Bravo handheld Raman spectrophotometer relying on the excitation of Raman signal with temperature-shifted diode lasers emitting at 852 and 785 nm. To this end, we explore the spectral features of common historical pigments examined as powders and in the paint layer. We show that some materials may exhibit slightly different spectra as concerns especially the relative intensity of Raman lines with 852 nm laser excitation wavelength as compared to the standard 785 nm. The aim is to provide the research community with a reference spectral database that facilitates the identification of unknown pigments using the 852 nm excitation source.
2024
Istituto Nazionale di Ottica - INO
852 nm excitation laser
database
historical pigments
paint layers
Raman spectroscopy
File in questo prodotto:
File Dimensione Formato  
minerals-14-00557-v2_compressed.pdf

accesso aperto

Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 1.78 MB
Formato Adobe PDF
1.78 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/535304
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact