As additive manufacturing of periodic open cellular structures (POCS) is gaining interest in structured catalytic reactor research, this work seeks to thermohydraulically compare the well-known Kelvin lattice structure with the lesser-researched BCC and gyroid lattice structures. Using a combined CFD (Computational Fluid Dynamic) and experimental approach, the selected POCS are fabricated through Laser Powder Bed Fusion (LPBF), char acterized, and subsequently subjected to numerical analysis. From the manufacturability point of view, the 3D printed samples closely matched their CAD designs, showing a maximum porosity deviation of 15% below design values. A CFD model, validated through pressure drop experiment, was employed to compare the POCS designs on shared geometric attributes such as specific surface area and porosity. While all structures exhibited com parable performance in term of heat and momentum transfer, our findings suggest that the Gyroid lattice may provide the optimal balance between momentum and heat transfer rates in low-velocity region. Conversely, the BCC configuration may be more favourable at higher velocity. An Ergun-like correlation was also developed and validated for each lattice type, with a Mean Absolute Percentage Error (MAPE) below 10%. Our pressure drop results align quite well with existing literature correlations, showing a MAPE under 20%. Concerning heat transfer, the values forecasted in this research show a reasonable alignment with literature’s results, though they tend to be on the lower spectrum.
Comparison of thermo-hydraulic performance among different 3D printed periodic open cellular structures
Marino G.;Thomas M.;Italiano C.;Vita A.;
2024
Abstract
As additive manufacturing of periodic open cellular structures (POCS) is gaining interest in structured catalytic reactor research, this work seeks to thermohydraulically compare the well-known Kelvin lattice structure with the lesser-researched BCC and gyroid lattice structures. Using a combined CFD (Computational Fluid Dynamic) and experimental approach, the selected POCS are fabricated through Laser Powder Bed Fusion (LPBF), char acterized, and subsequently subjected to numerical analysis. From the manufacturability point of view, the 3D printed samples closely matched their CAD designs, showing a maximum porosity deviation of 15% below design values. A CFD model, validated through pressure drop experiment, was employed to compare the POCS designs on shared geometric attributes such as specific surface area and porosity. While all structures exhibited com parable performance in term of heat and momentum transfer, our findings suggest that the Gyroid lattice may provide the optimal balance between momentum and heat transfer rates in low-velocity region. Conversely, the BCC configuration may be more favourable at higher velocity. An Ergun-like correlation was also developed and validated for each lattice type, with a Mean Absolute Percentage Error (MAPE) below 10%. Our pressure drop results align quite well with existing literature correlations, showing a MAPE under 20%. Concerning heat transfer, the values forecasted in this research show a reasonable alignment with literature’s results, though they tend to be on the lower spectrum.File | Dimensione | Formato | |
---|---|---|---|
53-2024-Richard (ChemEnjJ).pdf
accesso aperto
Licenza:
Creative commons
Dimensione
18.06 MB
Formato
Adobe PDF
|
18.06 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.