The generation of synthetic textile waste is a growing global concern, with an unsustainable rate of expansion. This study addresses the growing issue of synthetic textile waste by converting polyester–polyurethane (PET-PU) post-industrial scraps into microporous carbon materials, which can be utilized for wastewater treatment. Using a straightforward pyrolysis process, we achieved a high specific surface area (632 m2/g) and narrow porosity range (2–10 Å) without requiring chemical activation. The produced carbon materials effectively adsorbed methylene blue and orange II dyes, with maximum adsorption capacities of 169.49 mg/g and 147.56 mg/g, respectively. Kinetic studies demonstrated that adsorption followed a pseudo-second-order model, indicating strong interactions between the adsorbent and dyes. Regeneration tests showed that the C-PET-PU could be reused for multiple cycles with over 85% retention of its original adsorption capacity. Preliminary life cycle assessment (LCA) and life cycle cost (LCC) analysis highlighted the environmental and economic advantages of this upcycling approach, showing a reduced global warming potential and a production cost of approximately 1.65 EUR/kg. These findings suggest that transforming PET-PU waste into valuable adsorbents provides a sustainable solution for the circular economy and highlights the potential for broader applications in environmental remediation.
From Waste to Worth: Innovative Pyrolysis of Textile Waste into Microporous Carbons for Enhanced Environmental Sustainability
Anceschi, Anastasia
Primo
Conceptualization
;Trotta, FrancescoSecondo
Writing – Review & Editing
;Zoccola, MarinaWriting – Review & Editing
;Patrucco, AlessiaUltimo
Supervision
2025
Abstract
The generation of synthetic textile waste is a growing global concern, with an unsustainable rate of expansion. This study addresses the growing issue of synthetic textile waste by converting polyester–polyurethane (PET-PU) post-industrial scraps into microporous carbon materials, which can be utilized for wastewater treatment. Using a straightforward pyrolysis process, we achieved a high specific surface area (632 m2/g) and narrow porosity range (2–10 Å) without requiring chemical activation. The produced carbon materials effectively adsorbed methylene blue and orange II dyes, with maximum adsorption capacities of 169.49 mg/g and 147.56 mg/g, respectively. Kinetic studies demonstrated that adsorption followed a pseudo-second-order model, indicating strong interactions between the adsorbent and dyes. Regeneration tests showed that the C-PET-PU could be reused for multiple cycles with over 85% retention of its original adsorption capacity. Preliminary life cycle assessment (LCA) and life cycle cost (LCC) analysis highlighted the environmental and economic advantages of this upcycling approach, showing a reduced global warming potential and a production cost of approximately 1.65 EUR/kg. These findings suggest that transforming PET-PU waste into valuable adsorbents provides a sustainable solution for the circular economy and highlights the potential for broader applications in environmental remediation.File | Dimensione | Formato | |
---|---|---|---|
polymers-17-00341.pdf
accesso aperto
Tipologia:
Versione Editoriale (PDF)
Licenza:
Creative commons
Dimensione
2.85 MB
Formato
Adobe PDF
|
2.85 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.