Black soldier fly (BSF) melanin is a new supply of the brown-black pigment eumelanin. Given that eumelanin is a model bioelectronic material for applications such as medical devices and sensors, understanding BSF melanin’s electrical properties is important to confirm its viability as an advanced material. Presented here is a systematic, hydration dependent alternating current study of BSF melanin utilising both H2O and D2O vapours. There is a clear difference between the vapours, enabling a thorough analysis including Nyquist plots with model circuit analysis, broad band dielectric spectroscopic modelling as well as applying the Trukhan model to understand free ion concentration and mobility changes as a function of hydration. We find that BSF melanin behaves similarly to previous reports on synthetic systems, and the analysis here sheds additional light on potential charge transport changes. Significantly, a key finding is that there are two different mobility mechanisms for ion transport depending on hydration.

Exploring ion mobility mechanisms in poly indolequinone polymers: a case study on black soldier fly melanin

Ambrico M.;Ambrico P. F.;Mattiello S.;
2024

Abstract

Black soldier fly (BSF) melanin is a new supply of the brown-black pigment eumelanin. Given that eumelanin is a model bioelectronic material for applications such as medical devices and sensors, understanding BSF melanin’s electrical properties is important to confirm its viability as an advanced material. Presented here is a systematic, hydration dependent alternating current study of BSF melanin utilising both H2O and D2O vapours. There is a clear difference between the vapours, enabling a thorough analysis including Nyquist plots with model circuit analysis, broad band dielectric spectroscopic modelling as well as applying the Trukhan model to understand free ion concentration and mobility changes as a function of hydration. We find that BSF melanin behaves similarly to previous reports on synthetic systems, and the analysis here sheds additional light on potential charge transport changes. Significantly, a key finding is that there are two different mobility mechanisms for ion transport depending on hydration.
2024
Istituto per la Scienza e Tecnologia dei Plasmi - ISTP - Sede Secondaria Bari
BSF/melanin
circular economy
hydration
mobility
File in questo prodotto:
File Dimensione Formato  
Ambrico2024.pdf

solo utenti autorizzati

Licenza: Creative commons
Dimensione 2.32 MB
Formato Adobe PDF
2.32 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/535670
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
social impact