In this work, a heart-cut bidimensional achiral-chiral liquid chromatography method coupled to high-resolution mass spectrometry was developed for the separation of the main carboxylated phytocannabinoids, namely cannabidiolic acid (CBDA), tetrahydrocannabinolic acid (THCA), cannabichromenic acid (CBCA), and cannabicyclolic acid (CBLA), and decarboxylated derivatives, namely cannabidiol (CBD), Δ9-tetrahydrocannabinol (Δ9-THC), cannabichromene (CBC), and cannabicyclol (CBL), and the evaluation of their enantiomeric composition in extracts of different Cannabis sativa L. varieties. Optimal conditions for the chiral analysis of CBC- and CBL-type compounds were found with methanol and water (95:5, v/v, with 0.1% formic acid, 1.5 mL/min) on an amylose-based chiral stationary phase. These settings also allowed to evaluate the parameters responsible for CBC and CBCA racemization.

Bidimensional heart-cut achiral-chiral liquid chromatography coupled to high-resolution mass spectrometry for the separation of the main chiral phytocannabinoids and enantiomerization studies of cannabichromene and cannabichromenic acid

Gigli G.;Citti C.
;
Cannazza G.
2024

Abstract

In this work, a heart-cut bidimensional achiral-chiral liquid chromatography method coupled to high-resolution mass spectrometry was developed for the separation of the main carboxylated phytocannabinoids, namely cannabidiolic acid (CBDA), tetrahydrocannabinolic acid (THCA), cannabichromenic acid (CBCA), and cannabicyclolic acid (CBLA), and decarboxylated derivatives, namely cannabidiol (CBD), Δ9-tetrahydrocannabinol (Δ9-THC), cannabichromene (CBC), and cannabicyclol (CBL), and the evaluation of their enantiomeric composition in extracts of different Cannabis sativa L. varieties. Optimal conditions for the chiral analysis of CBC- and CBL-type compounds were found with methanol and water (95:5, v/v, with 0.1% formic acid, 1.5 mL/min) on an amylose-based chiral stationary phase. These settings also allowed to evaluate the parameters responsible for CBC and CBCA racemization.
2024
Istituto di Nanotecnologia - NANOTEC - Sede Lecce
2D chromatography
Cannabichromene
Cannabichromenic acid
Chiral analysis
Racemization
Reversed phase liquid chromatography
File in questo prodotto:
File Dimensione Formato  
Bidimensional heart-cut achiral-chiral liquid chromatography coupled to.pdf

solo utenti autorizzati

Tipologia: Versione Editoriale (PDF)
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 6.46 MB
Formato Adobe PDF
6.46 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/535685
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 1
social impact