This study investigates the reconstruction of climatological patterns and vegetation dynamics in the Horn of Africa region using high temporal resolution (i.e. daily) Normalized Difference Vegetation Index (NDVI) datasets. The analysis compares a straight-forward processing approach to derive a daily vegetation index from a geostationary (SEVIRI) satellite with existing NDVI series from geostationary or polar-orbiting (MODIS, MetOp-AVHRR) satellites, highlighting the impact of cloud contamination on data quality in high temporal resolution datasets. Using a smoothing process designed to reconstruct the upper envelope of the vegetation status series, we obtained a daily vegetation dataset that effectively mitigated cloud-induced fluctuations, outperforming polar-orbiting (e.g. MODIS) satellite-derived dataset in capturing regional climatology. We demonstrated this through statistical analysis, including autocorrelation and mean absolute difference between consecutive observations. We showed that cloud contamination significantly affects high temporal resolution NDVI series, particularly in forest areas, which makes it difficult to identify a suitable dataset to validate our approach. Therefore, we mitigated this problem using a Maximum Value Compositing technique, designed to remove cloud-induced biases and further compared our results with another independent vegetation index at coarser temporal resolution derived from AVHRR. We found that our vegetation index closely relates with MODIS 10-day composites after removing cloud-contaminated pixels. Furthermore, the study evaluates the sensitivity of the selected NDVI datasets to drought events, demonstrating the strength of the proposed SEVIRI dataset in capturing the intensity and persistence of vegetation anomalies. In conclusion, the study presents an innovative strategy for deriving daily-resolution NDVI datasets in cloud-prone regions, validating it with independent datasets at different sub-monthly temporal scales.

A high temporal resolution NDVI time series to monitor drought events in the Horn of Africa

Casella Daniele
Secondo
Supervision
;
Panegrossi Giulia
Penultimo
Project Administration
;
Sano Paolo
Ultimo
Supervision
2024

Abstract

This study investigates the reconstruction of climatological patterns and vegetation dynamics in the Horn of Africa region using high temporal resolution (i.e. daily) Normalized Difference Vegetation Index (NDVI) datasets. The analysis compares a straight-forward processing approach to derive a daily vegetation index from a geostationary (SEVIRI) satellite with existing NDVI series from geostationary or polar-orbiting (MODIS, MetOp-AVHRR) satellites, highlighting the impact of cloud contamination on data quality in high temporal resolution datasets. Using a smoothing process designed to reconstruct the upper envelope of the vegetation status series, we obtained a daily vegetation dataset that effectively mitigated cloud-induced fluctuations, outperforming polar-orbiting (e.g. MODIS) satellite-derived dataset in capturing regional climatology. We demonstrated this through statistical analysis, including autocorrelation and mean absolute difference between consecutive observations. We showed that cloud contamination significantly affects high temporal resolution NDVI series, particularly in forest areas, which makes it difficult to identify a suitable dataset to validate our approach. Therefore, we mitigated this problem using a Maximum Value Compositing technique, designed to remove cloud-induced biases and further compared our results with another independent vegetation index at coarser temporal resolution derived from AVHRR. We found that our vegetation index closely relates with MODIS 10-day composites after removing cloud-contaminated pixels. Furthermore, the study evaluates the sensitivity of the selected NDVI datasets to drought events, demonstrating the strength of the proposed SEVIRI dataset in capturing the intensity and persistence of vegetation anomalies. In conclusion, the study presents an innovative strategy for deriving daily-resolution NDVI datasets in cloud-prone regions, validating it with independent datasets at different sub-monthly temporal scales.
2024
Istituto di Scienze dell'Atmosfera e del Clima - ISAC - Sede Secondaria Roma
NDVI, High temporal resolution, Cloud contamination, Geostationary satellite, Drought, Horn of Africa
File in questo prodotto:
File Dimensione Formato  
1-s2.0-S1569843224006204-main.pdf

accesso aperto

Descrizione: Articolo
Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 7.26 MB
Formato Adobe PDF
7.26 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/535714
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
social impact