In many numerical scientific papers, MILD combustion is defined on the basis of the disappearance of extinction phenomena while varying mixture dilution levels, through the identification of the condition where ignition and extinction collapse in an unique event. Albeit with numerous contributions in elementary reactor configurations (Continuous Stirred Flow Reactors, Opposed-Diffusion flames), operating conditions to achieve this noticeable circumstance do not properly match with experimental evidences, since they lead to extreme mixture dilution levels (higher than 99% for CH4). In addition, many works suggest the occurrence of extinctions phenomena or instabilities under MILD conditions, symptomatic of extinction/re-ignition phenomena. Simulations in an adiabatic CSTR for CH4/O2/N2 mixtures, varying the N2 content, were realized with the focus to analyze the system behavior through hysteresis. Results show different hysteresis behaviors from “air” to diluted conditions, demonstrating the occurrence of the condition Text=Tign is not a strict constraint for MILD combustion systems. In addition, the “unstable” branch has characteristic temperatures lower than the ones related to both the ignition and extinction events, enlarging the opportunity to stabilize MILD combustion processes. These results pave the way to the reconsideration of peculiar aspects of MILD combustion processes.
Novel insights into mild combustion processes through analyses of hysteresis behavior
Sabia, Pino
Conceptualization
;Manna, Maria VirginiaMethodology
;Ariemma, Giovanni BattistaMethodology
;Sorrentino, GiancarloFormal Analysis
;Ragucci, RaffaeleConceptualization
;de Joannon, Mariarosaria de Joannon
2023
Abstract
In many numerical scientific papers, MILD combustion is defined on the basis of the disappearance of extinction phenomena while varying mixture dilution levels, through the identification of the condition where ignition and extinction collapse in an unique event. Albeit with numerous contributions in elementary reactor configurations (Continuous Stirred Flow Reactors, Opposed-Diffusion flames), operating conditions to achieve this noticeable circumstance do not properly match with experimental evidences, since they lead to extreme mixture dilution levels (higher than 99% for CH4). In addition, many works suggest the occurrence of extinctions phenomena or instabilities under MILD conditions, symptomatic of extinction/re-ignition phenomena. Simulations in an adiabatic CSTR for CH4/O2/N2 mixtures, varying the N2 content, were realized with the focus to analyze the system behavior through hysteresis. Results show different hysteresis behaviors from “air” to diluted conditions, demonstrating the occurrence of the condition Text=Tign is not a strict constraint for MILD combustion systems. In addition, the “unstable” branch has characteristic temperatures lower than the ones related to both the ignition and extinction events, enlarging the opportunity to stabilize MILD combustion processes. These results pave the way to the reconsideration of peculiar aspects of MILD combustion processes.File | Dimensione | Formato | |
---|---|---|---|
1-s2.0-S1540748922002802-main.pdf
solo utenti autorizzati
Tipologia:
Versione Editoriale (PDF)
Licenza:
NON PUBBLICO - Accesso privato/ristretto
Dimensione
856.03 kB
Formato
Adobe PDF
|
856.03 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.