As an alternative to fossil-based polymers, polylactide acid (PLA) has stimulated a significant research effort in the past few years due to the demand for environmentally friendly products. Even though PLA is considered a sustainable or bio-based material, the long-term degradation in ambient conditions increases the volume of waste at end-of-life. To overcome this issue, PLA waste can be recycled to produce new manufactures; however, this approach does not always ensure the same mechanical properties as the original PLA. This study shows for the first time that adding biochar, a carbon material derived from biomass pyrolysis, enhances the processability and stability of composite recycled PLA. Composites are provided in 1, 2.5, and 5 wt% of the biochar filler, resulting in good processability, a higher modulus of up to 20%, and a higher stability to degradation in the presence of UV aging treatment with respect to the raw material. Additionally, DSC analysis shows a significant nucleation effect induced by the biochar that achieves 30% crystallinity from an essentially amorphous PLA.

Biochar as Sustainable Filler of Recycled Polylactic Acid (PLA): A New Generation of Processable Biocomposites

Grottola, Corinna Maria;Amato, Davide;
2024

Abstract

As an alternative to fossil-based polymers, polylactide acid (PLA) has stimulated a significant research effort in the past few years due to the demand for environmentally friendly products. Even though PLA is considered a sustainable or bio-based material, the long-term degradation in ambient conditions increases the volume of waste at end-of-life. To overcome this issue, PLA waste can be recycled to produce new manufactures; however, this approach does not always ensure the same mechanical properties as the original PLA. This study shows for the first time that adding biochar, a carbon material derived from biomass pyrolysis, enhances the processability and stability of composite recycled PLA. Composites are provided in 1, 2.5, and 5 wt% of the biochar filler, resulting in good processability, a higher modulus of up to 20%, and a higher stability to degradation in the presence of UV aging treatment with respect to the raw material. Additionally, DSC analysis shows a significant nucleation effect induced by the biochar that achieves 30% crystallinity from an essentially amorphous PLA.
2024
Istituto di Scienze e Tecnologie per l'Energia e la Mobilità Sostenibili - STEMS
biochar, recycled PLA, nucleation effect, composites, stabilization effect, aging treatment
File in questo prodotto:
File Dimensione Formato  
polymers-16-03347.pdf

accesso aperto

Licenza: Creative commons
Dimensione 2.23 MB
Formato Adobe PDF
2.23 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/535721
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 10
  • ???jsp.display-item.citation.isi??? 7
social impact