Low activity and a short lifetime are the main weaknesses of photocatalysts. The photoactivity of copper oxide, which is known as one of the most promising materials for H2 evolution and CO2 reduction, can be improved by coupling with other semiconductors. This effect is based on a mutual charge transfer. The photocathode developed in this work, based on a CuO–ZnO composite with mutual self-doping, exhibits attractive photoelectrochemical properties, in particular a high density of generated photocurrent lasting for 24 h. Under visible light irradiation, the composite produces water-splitting, while in the presence of carbon dioxide it is able to perform CO2 reduction to methanol with good selectivity coupled to water oxidation. The high activity of the CuO-based cathode is due to the presence of zinc oxide, which is progressively leached, causing a slow decrease of the photoactivity of the material.

Copper–zinc oxide heterostructure photocathodes for hydrogen and methanol production

Comparelli R.;Dibenedetto A.
;
2024

Abstract

Low activity and a short lifetime are the main weaknesses of photocatalysts. The photoactivity of copper oxide, which is known as one of the most promising materials for H2 evolution and CO2 reduction, can be improved by coupling with other semiconductors. This effect is based on a mutual charge transfer. The photocathode developed in this work, based on a CuO–ZnO composite with mutual self-doping, exhibits attractive photoelectrochemical properties, in particular a high density of generated photocurrent lasting for 24 h. Under visible light irradiation, the composite produces water-splitting, while in the presence of carbon dioxide it is able to perform CO2 reduction to methanol with good selectivity coupled to water oxidation. The high activity of the CuO-based cathode is due to the presence of zinc oxide, which is progressively leached, causing a slow decrease of the photoactivity of the material.
2024
Istituto per i Processi Chimico-Fisici - IPCF - Sede Secondaria Bari
Methanol production from CO2 and water, CO2 PEC reduction, PEC water splitting
File in questo prodotto:
File Dimensione Formato  
baran Mat Tod Adv 2024.pdf

accesso aperto

Tipologia: Versione Editoriale (PDF)
Licenza: Dominio pubblico
Dimensione 8.37 MB
Formato Adobe PDF
8.37 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/535869
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact