In the search for novel photonic materials, the recent focus on metal halide perovskites (MHPs) has revealed their promise to become groundbreaking low-threshold, tunable coherent light sources. An accurate determination of the optical gain coefficient (g) would help to screen for materials and design highly efficient perovskite lasers. Nevertheless, contradictory numbers are continuously reported, making this figure of merit unreliable. To address this issue, the present work outlines a meticulous analysis to retrieve g of MAPbI3, based on the variable stripe-length (VSL) method. This method is often preferred due to its apparent simplicity; however, one can arrive at incorrect conclusions without the adequate considerations. Therefore, here the experimental implementation and numerical treatment of the data are thoroughly discussed to establish a robust VSL methodology. The obtained power dependence and spectral gain evolution point to the role of electron–hole bimolecular recombination dictating the stimulated emission properties of MAPbI3, with a behavior resembling that of bulk GaAs. Beyond providing further knowledge on the procedure to carry out pertinent VSL measurements, this work also outlines a meticulous methodology to study the underlying photophysical gain properties of MHPs and consequently, to obtain a deeper understanding of the lasing properties of these complex materials.

Optical Gain of Lead Halide Perovskites Measured via the Variable Stripe Length Method: What We Can Learn and How to Avoid Pitfalls

Folpini G.;
2021

Abstract

In the search for novel photonic materials, the recent focus on metal halide perovskites (MHPs) has revealed their promise to become groundbreaking low-threshold, tunable coherent light sources. An accurate determination of the optical gain coefficient (g) would help to screen for materials and design highly efficient perovskite lasers. Nevertheless, contradictory numbers are continuously reported, making this figure of merit unreliable. To address this issue, the present work outlines a meticulous analysis to retrieve g of MAPbI3, based on the variable stripe-length (VSL) method. This method is often preferred due to its apparent simplicity; however, one can arrive at incorrect conclusions without the adequate considerations. Therefore, here the experimental implementation and numerical treatment of the data are thoroughly discussed to establish a robust VSL methodology. The obtained power dependence and spectral gain evolution point to the role of electron–hole bimolecular recombination dictating the stimulated emission properties of MAPbI3, with a behavior resembling that of bulk GaAs. Beyond providing further knowledge on the procedure to carry out pertinent VSL measurements, this work also outlines a meticulous methodology to study the underlying photophysical gain properties of MHPs and consequently, to obtain a deeper understanding of the lasing properties of these complex materials.
2021
Istituto di fotonica e nanotecnologie - IFN - Sede Milano
Optical gain
2D perovskite
Lasing
File in questo prodotto:
File Dimensione Formato  
Alvarado-Leaños_manuscript.pdf

accesso aperto

Tipologia: Documento in Pre-print
Licenza: Altro tipo di licenza
Dimensione 1.17 MB
Formato Adobe PDF
1.17 MB Adobe PDF Visualizza/Apri
Optical_Gain_of_Lead_Halide_Perovskites_Measured_v.pdf

solo utenti autorizzati

Tipologia: Versione Editoriale (PDF)
Licenza: Altro tipo di licenza
Dimensione 1.11 MB
Formato Adobe PDF
1.11 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/536367
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 35
  • ???jsp.display-item.citation.isi??? 33
social impact