In today’s global market, the movement of raw materials and goods in the free global market can lead to unintended consequences. One significant concern is the potential presence of contaminants and carcinogens, particularly when products originate from regions with less strict regulations and enforcement. This issue is particularly pertinent in the natural raw materials utilized in the global building materials market, where contamination by asbestos minerals can occur. Therefore, the screening of natural raw materials for asbestos content is crucial to mitigate the risk of exposure to carcinogens for both workers and the general public. In this study, we examine a challenging case involving a smectite–kaolinite clay from Gomsiqe–Puka, Albania, possibly containing mineral fibres. Detection and quantification of asbestos in this material push the boundaries of current experimental methods. Using transmission electron microscopy (TEM), micro-Raman spectroscopy, and electron probe microanalysis (EPMA), we identified the presence of asbestos tremolite, along with a rare fibrous variety of diopside. EPMA data allowed the advancement of some speculations on the origin of the observed tremolites, showing that Al-rich tremolites are typical of oceanic settings and Al-poor tremolites are more similar to continental tremolites. We also investigated the impact of milling on the detection and quantification of mineral fibres, testing different milling times. This investigation is crucial as it can influence the classification of the raw material as asbestoscontaining material or not. Our findings indicate that tremolite, cleavage fragments, and elongated particles break down into smaller World Health Organization (WHO) fibres with increasing milling times (1–5 min). However, prolonged milling (10 min) leads to overgrinding, resulting in a decrease in the number of counted WHO fibres with a length exceeding 5 μm. Published

When detection and quantification of mineral fibres in natural raw materials are at their limit-the case of a clay from the Gomsiqe-Puka mining area (Albania)

Braschi E.;Orlando A.
Secondo
;
2024

Abstract

In today’s global market, the movement of raw materials and goods in the free global market can lead to unintended consequences. One significant concern is the potential presence of contaminants and carcinogens, particularly when products originate from regions with less strict regulations and enforcement. This issue is particularly pertinent in the natural raw materials utilized in the global building materials market, where contamination by asbestos minerals can occur. Therefore, the screening of natural raw materials for asbestos content is crucial to mitigate the risk of exposure to carcinogens for both workers and the general public. In this study, we examine a challenging case involving a smectite–kaolinite clay from Gomsiqe–Puka, Albania, possibly containing mineral fibres. Detection and quantification of asbestos in this material push the boundaries of current experimental methods. Using transmission electron microscopy (TEM), micro-Raman spectroscopy, and electron probe microanalysis (EPMA), we identified the presence of asbestos tremolite, along with a rare fibrous variety of diopside. EPMA data allowed the advancement of some speculations on the origin of the observed tremolites, showing that Al-rich tremolites are typical of oceanic settings and Al-poor tremolites are more similar to continental tremolites. We also investigated the impact of milling on the detection and quantification of mineral fibres, testing different milling times. This investigation is crucial as it can influence the classification of the raw material as asbestoscontaining material or not. Our findings indicate that tremolite, cleavage fragments, and elongated particles break down into smaller World Health Organization (WHO) fibres with increasing milling times (1–5 min). However, prolonged milling (10 min) leads to overgrinding, resulting in a decrease in the number of counted WHO fibres with a length exceeding 5 μm. Published
2024
Istituto di Geoscienze e Georisorse - IGG - Sede Secondaria Firenze
asbestos
File in questo prodotto:
File Dimensione Formato  
Gualtieri et alii, 2024 EJM.pdf

accesso aperto

Descrizione: When detection and quantification of mineral fibres in natural raw materials are at their limit– the case of a clay from the Gomsiqe–Puka mining area (Albania)
Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 8.57 MB
Formato Adobe PDF
8.57 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/536432
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact