The presence of water in lubricant oils is a parameter related to the lubricant deterioration, which can be indicative of a serious loss of tribological efficiency and, therefore, an increase in maintenance costs. Likewise, controlling the aging of the lubricant oil is a keynote issue to prevent damage on the lubricated surfaces (e.g. engine pieces). The combination of Attenuated Total Reflectance (ATR) techniques with Fourier-Transform Infrared Spectrometry (FTIR) result in an easy, simple, fast and non-destructive way for obtaining accurate information about the actual situation of a lubricant oil. The analysis of this ATR-FTIR information using Artificial Neural Networks (ANN) as well as Linear Discriminant Analysis (LDA) results in the proper classification of lubricant oils regarding the presence/absence of water, age and viscosity. The methodology proposed in this work describes procedures for identifying the deterioration degree of oils with as high as 100% success (aging week) or 97.7% (for viscosity and water presence).

Artificial Intelligence and fourier-transform infrared spectroscopy for evaluating water-mediated degradation of lubricant oils

Murru, Clarissa;
2020

Abstract

The presence of water in lubricant oils is a parameter related to the lubricant deterioration, which can be indicative of a serious loss of tribological efficiency and, therefore, an increase in maintenance costs. Likewise, controlling the aging of the lubricant oil is a keynote issue to prevent damage on the lubricated surfaces (e.g. engine pieces). The combination of Attenuated Total Reflectance (ATR) techniques with Fourier-Transform Infrared Spectrometry (FTIR) result in an easy, simple, fast and non-destructive way for obtaining accurate information about the actual situation of a lubricant oil. The analysis of this ATR-FTIR information using Artificial Neural Networks (ANN) as well as Linear Discriminant Analysis (LDA) results in the proper classification of lubricant oils regarding the presence/absence of water, age and viscosity. The methodology proposed in this work describes procedures for identifying the deterioration degree of oils with as high as 100% success (aging week) or 97.7% (for viscosity and water presence).
2020
Istituto Nazionale di Ottica - INO - Sede Secondaria di Sesto Fiorentino
ANN
Artificial neural networks
FTIR
LDA
Linear discriminant analysis
Lubricant oil aging
File in questo prodotto:
File Dimensione Formato  
1-s2.0-S0039914020306032-main (1).pdf

solo utenti autorizzati

Tipologia: Versione Editoriale (PDF)
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 2.39 MB
Formato Adobe PDF
2.39 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/536644
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 32
  • ???jsp.display-item.citation.isi??? 25
social impact