The presence of water in lubricant oils is a parameter related to the lubricant deterioration, which can be indicative of a serious loss of tribological efficiency and, therefore, an increase in maintenance costs. Likewise, controlling the aging of the lubricant oil is a keynote issue to prevent damage on the lubricated surfaces (e.g. engine pieces). The combination of Attenuated Total Reflectance (ATR) techniques with Fourier-Transform Infrared Spectrometry (FTIR) result in an easy, simple, fast and non-destructive way for obtaining accurate information about the actual situation of a lubricant oil. The analysis of this ATR-FTIR information using Artificial Neural Networks (ANN) as well as Linear Discriminant Analysis (LDA) results in the proper classification of lubricant oils regarding the presence/absence of water, age and viscosity. The methodology proposed in this work describes procedures for identifying the deterioration degree of oils with as high as 100% success (aging week) or 97.7% (for viscosity and water presence).
Artificial Intelligence and fourier-transform infrared spectroscopy for evaluating water-mediated degradation of lubricant oils
Murru, Clarissa;
2020
Abstract
The presence of water in lubricant oils is a parameter related to the lubricant deterioration, which can be indicative of a serious loss of tribological efficiency and, therefore, an increase in maintenance costs. Likewise, controlling the aging of the lubricant oil is a keynote issue to prevent damage on the lubricated surfaces (e.g. engine pieces). The combination of Attenuated Total Reflectance (ATR) techniques with Fourier-Transform Infrared Spectrometry (FTIR) result in an easy, simple, fast and non-destructive way for obtaining accurate information about the actual situation of a lubricant oil. The analysis of this ATR-FTIR information using Artificial Neural Networks (ANN) as well as Linear Discriminant Analysis (LDA) results in the proper classification of lubricant oils regarding the presence/absence of water, age and viscosity. The methodology proposed in this work describes procedures for identifying the deterioration degree of oils with as high as 100% success (aging week) or 97.7% (for viscosity and water presence).| File | Dimensione | Formato | |
|---|---|---|---|
|
1-s2.0-S0039914020306032-main (1).pdf
solo utenti autorizzati
Tipologia:
Versione Editoriale (PDF)
Licenza:
NON PUBBLICO - Accesso privato/ristretto
Dimensione
2.39 MB
Formato
Adobe PDF
|
2.39 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


