Cooling the center-of-mass motion is an important tool for levitated optomechanical systems, but it is often not clear which method can practically reach lower temperatures for a particular experiment. We directly compare the parametric and velocity feedback damping methods, which are used extensively for cooling the motion of single trapped particles in a range of traps. By performing experiments on the same particle, and with the same detection system, we demonstrate that velocity damping cools the oscillator to a temperature an order of magnitude lower and is more resilient to imperfect experimental conditions. We show that these results are consistent with analytical limits as well as numerical simulations that include experimental noise.
Performance and limits of feedback cooling methods for levitated oscillators: A direct comparison
Pontin A.;
2021
Abstract
Cooling the center-of-mass motion is an important tool for levitated optomechanical systems, but it is often not clear which method can practically reach lower temperatures for a particular experiment. We directly compare the parametric and velocity feedback damping methods, which are used extensively for cooling the motion of single trapped particles in a range of traps. By performing experiments on the same particle, and with the same detection system, we demonstrate that velocity damping cools the oscillator to a temperature an order of magnitude lower and is more resilient to imperfect experimental conditions. We show that these results are consistent with analytical limits as well as numerical simulations that include experimental noise.| File | Dimensione | Formato | |
|---|---|---|---|
|
PhysRevA.104.023502.pdf
solo utenti autorizzati
Tipologia:
Versione Editoriale (PDF)
Licenza:
NON PUBBLICO - Accesso privato/ristretto
Dimensione
1.34 MB
Formato
Adobe PDF
|
1.34 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
|
2102.01060v3.pdf
accesso aperto
Tipologia:
Documento in Post-print
Licenza:
Altro tipo di licenza
Dimensione
1.38 MB
Formato
Adobe PDF
|
1.38 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


