In recent years, there has been a growing emphasis on assessing and ensuring the quality of horticultural and agricultural produce. Traditional methods involving field measurements, investigations, and statistical analyses are labour-intensive, time-consuming, and costly. As a solution, Hyperspectral Imaging (HSI) has emerged as a non-destructive and environmentally friendly technology. HSI has gained significant popularity as a new technology, particularly for its promising applications in remote sensing, notably in agriculture. However, classifying HSI data is highly complex because it involves several challenges, such as the excessive redundancy of spectral bands, scarcity of training samples, and the intricate non-linear relationship between spatial positions and spectral bands. Notably, Deep Learning (DL) techniques have demonstrated remarkable efficacy in various HSI analysis tasks, including those within agriculture. As interest continues to surge in leveraging HSI data for agricultural applications through DL approaches, a pressing need exists for a comprehensive survey that can effectively navigate researchers through the significant strides achieved and the future promising research directions in this domain. This literature review diligently compiles, analyzes, and discusses recent endeavours employing DL methodologies. These methodologies encompass a spectrum of approaches, ranging from Autoencoders (AE) to Convolutional Neural Networks (CNN) (in 1D, 2D, and 3D configurations), Recurrent Neural Networks (RNN), Deep Belief Networks (DBN), Generative Adversarial Networks (GAN), Transfer Learning (TL), Semi-Supervised Learning (SSL), Few-Shot Learning (FSL) and Active Learning (AL). These approaches are tailored to address the unique challenges posed by agricultural HSI analysis. This review evaluates and discusses the performance exhibited by these diverse approaches. To this end, the efficiency of these approaches has been rigorously analyzed and discussed based on the results of the state-of-the-art papers on widely recognized land cover datasets. Github repository.

Deep learning techniques for hyperspectral image analysis in agriculture: A review

Guerri M. F.
Methodology
;
Distante C.
Relatore interno
;
Spagnolo P.
Methodology
;
2024

Abstract

In recent years, there has been a growing emphasis on assessing and ensuring the quality of horticultural and agricultural produce. Traditional methods involving field measurements, investigations, and statistical analyses are labour-intensive, time-consuming, and costly. As a solution, Hyperspectral Imaging (HSI) has emerged as a non-destructive and environmentally friendly technology. HSI has gained significant popularity as a new technology, particularly for its promising applications in remote sensing, notably in agriculture. However, classifying HSI data is highly complex because it involves several challenges, such as the excessive redundancy of spectral bands, scarcity of training samples, and the intricate non-linear relationship between spatial positions and spectral bands. Notably, Deep Learning (DL) techniques have demonstrated remarkable efficacy in various HSI analysis tasks, including those within agriculture. As interest continues to surge in leveraging HSI data for agricultural applications through DL approaches, a pressing need exists for a comprehensive survey that can effectively navigate researchers through the significant strides achieved and the future promising research directions in this domain. This literature review diligently compiles, analyzes, and discusses recent endeavours employing DL methodologies. These methodologies encompass a spectrum of approaches, ranging from Autoencoders (AE) to Convolutional Neural Networks (CNN) (in 1D, 2D, and 3D configurations), Recurrent Neural Networks (RNN), Deep Belief Networks (DBN), Generative Adversarial Networks (GAN), Transfer Learning (TL), Semi-Supervised Learning (SSL), Few-Shot Learning (FSL) and Active Learning (AL). These approaches are tailored to address the unique challenges posed by agricultural HSI analysis. This review evaluates and discusses the performance exhibited by these diverse approaches. To this end, the efficiency of these approaches has been rigorously analyzed and discussed based on the results of the state-of-the-art papers on widely recognized land cover datasets. Github repository.
2024
Istituto di Scienze Applicate e Sistemi Intelligenti "Eduardo Caianiello" - ISASI - Sede Secondaria Lecce
Agriculture
CNN
Deep learning
GAN
HSI
Hyperspectral imaging
RNN
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/536802
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ente

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 22
  • ???jsp.display-item.citation.isi??? ND
social impact